Cell therapies for muscular dystrophy.

Stanford University School of Medicine, Stanford, CA, USA.
New England Journal of Medicine (Impact Factor: 54.42). 10/2008; 359(13):1403-5. DOI: 10.1056/NEJMcibr0805708
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the four transcription factors, that is, Oct4, Sox2, cMyc, and Klf4 has been shown to generate induced pluripotent stem cells (iPSCs) from many types of specialized differentiated somatic cells. It remains unclear, however, whether fully committed skeletal muscle progenitor cells (myoblasts) have the potency to undergo reprogramming to develop iPSCs in line with previously reported cases. To test this, we have isolated genetically marked myoblasts derived from satellite cell of adult mouse muscles using the Cre-loxP system (Pax7-CreER:R26R and Myf5-Cre:R26R). On infection with retroviral vectors expressing the four factors, these myoblasts gave rise to myogenic lineage tracer lacZ-positive embryonic stem cell (ESC)-like colonies. These cells expressed ESC-specific genes and were competent to differentiate into all three germ layers and germ cells, indicating the successful generation of myoblast-derived iPSCs. Continuous expression of the MyoD gene, a master transcription factor for skeletal muscle specification, inhibited this reprogramming process in myoblasts. In contrast, reprogramming myoblasts isolated from mice lacking the MyoD gene led to an increase in reprogramming efficiency. Our data also indicated that Oct4 acts as a transcriptional suppressor of MyoD gene expression through its interaction with the upstream enhancer region. Taken together, these results indicate that suppression of MyoD gene expression by Oct4 is required for the initial reprogramming step in the development of iPSCs from myoblasts. This data suggests that the skeletal muscle system provides a well-defined differentiation model to further elaborate on the effects of iPSC reprogramming in somatic cells. STEM CELLS 2011;505–516
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness.
    Computerized Medical Imaging and Graphics 07/2014; 38(8). DOI:10.1016/j.compmedimag.2014.07.003 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The skeletal fibers have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterize also the adult muscle stem cells, known as satellite cells (SCs) and responsible for the fiber growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here, we isolated SCs from canine somitic [somite-derived muscle (SDM): vastus lateralis, rectus abdominis, gluteus superficialis, biceps femoris, psoas] and presomitic [pre-somite-derived muscle (PSDM): lateral rectus, temporalis, and retractor bulbi] muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM-SCs were obtained also from golden retrievers affected by muscular dystrophy (GRMD). We characterized the lifespan, the myogenic potential and functions, and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with aging and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD) and late (myosin heavy chain, myogenin) myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together, our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD SCs and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.
    Frontiers in Aging Neuroscience 01/2014; 6:90. DOI:10.3389/fnagi.2014.00090 · 2.84 Impact Factor


Available from