Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls The Wellcome Trust Case Control Consortium Nature 2010 464 713 20 10.1038/nature08979

Nature (Impact Factor: 41.46). 03/2010; 464(7289):713-720. DOI: 10.1038/nature08979


Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed ~19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated ~50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease—IRGM for Crohn’s disease, HLA for Crohn’s disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes—although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.

Download full-text


Available from: Mark Caulfield, Mar 09, 2014
  • Source
    • "CNVs were implicated in many human genetic diseases [50]; for example, it was suggested that rare CNV is an important source of risk for autism spectrum disorders (ASDs) [49, 51]. Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at over 30 gene loci, implicating several ASD-associated genes previously linked to other neurodevelopmental disorders [51]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the "ortholog conjecture" (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes.
    08/2014; 2014:516508. DOI:10.1155/2014/516508
  • Source
    • "Consequences of CNVs include gene dose effects, with reduced or increased protein expression, and also truncated protein sequences. While most common CNVs have little or no role in causing diseases (28), some have been associated with susceptibility or resistance to diseases (29). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e., amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses. So called "segmental chromosomal aberrations," (SCAs) i.e., gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH, and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as "chromothripsis" are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD) SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.
    Frontiers in Oncology 08/2014; 4:202. DOI:10.3389/fonc.2014.00202
  • Source
    • "The hypothesis of our study is that changes in genomic copy number may be associated with essential hypertension and/or BP variation but may have been missed in previous studies [9]. We first identified all the CNVs located in regions associated with BP/hypertension in the previous GWA meta-analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The role of copy number variation (CNV) has been poorly explored in essential hypertension in part due to technical difficulties in accurately assessing absolute numbers of DNA copies. Droplet digital PCR (ddPCR) provides a powerful new approach to CNV quantitation. The aim of our study was to investigate whether CNVs located in regions previously associated with blood pressure (BP) variation in genome-wide association studies (GWAS) were associated with essential hypertension by the use of ddPCR. Methods Using a “power of extreme” approach, we quantified nucleic acids using ddPCR in white subjects from the Victorian Family Heart Study with extremely high (n = 96) and low (n = 92) SBP, providing power equivalent to 1714 subjects selected at random. Results A deletion of the CNVs esv27061 and esv2757747 on chromosome 1p13.2 was significantly more prevalent in extreme high BP subjects after adjustment for age, body mass index and sex (12.6% vs. 2.2%; P = 0.013). Conclusions Our data suggests that CNVs within regions identified in previous GWAS may play a role in human essential hypertension.
    BMC Medical Genomics 07/2014; 7(1):44. DOI:10.1186/1755-8794-7-44 · 2.87 Impact Factor
Show more