Carnivorous plants: Mass march of termites into the deadly trap

Fachbereich Biologie, Zoologisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Postfach 111932, 60054 Frankfurt, Germany.
Nature (Impact Factor: 42.35). 01/2002; 415(6867):36-37. DOI: 10.1038/415036a

ABSTRACT Carnivorous pitcher plants of the genus

Download full-text


Available from: Georg Zizka, Aug 14, 2015
  • Source
    • "The compact anatomy of traps (reminiscent of roots), which is to restrict apoplastic conductivity (Pavlovič et al., 2007), serves the selective symplastic transport of nutrients gained from carnivory. Investments in the following cause considerable maintenance costs: attractants such as nectars and odours (Juniper et al., 1989; Moran, 1996; Bohn and Federle, 2004; Bennett and Ellison, 2009; Bhattarai and Horner, 2009; Jürgens et al., 2009); edible trichomes (Merbach et al., 2002); colourful projections (Schaefer and Ruxton, 2008) and UV patterns (Moran et al., 1999); resinous droplets (Voigt and Gorb, 2010) or slime that in Drosophyllum has a scent of honey, which may mimic nectar (Jürgens et al., 2009); glands excreting mucilage (Drosera, Pinguicula, Byblis) or a hydrophobic resin (Roridula) to catch prey (Juniper et al., 1989); glands excreting digestive enzymes – these digestive glands, with their attendant mechanisms for simultaneous enzyme secretion and nutrient absorption are an anatomical birthmark of the carnivorous syndrome (Lüttge, 1971; Benzing et al., 1976); exudation of organic compounds to support the microbial community associated with the traps (Sirová et al., 2009, 2010); and nutrient uptake machinery (An et al., 2001) required for functioning of each single trap (Knight, 1992; Adamec, 2006, 2010a; Pavlovič et al., 2007; Hájek and Adamec, 2010). Therefore, it is not surprising that the dual use of leaves for photosynthesis and nutrient uptake has deeply reduced the net photosynthetic rate of terrestrial carnivorous plants, leading ultimately to reduction of the relative growth rate (Ellison, 2006; Farnsworth and Ellison, 2008); giant carnivorous species are the exception rather than the rule: Triphyophyllum peltatum, Nepenthes rajah, N. edwardsi ana, N. ampullaria, N. rafflesiana and N. rafflesiana var. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as 'the most wonderful plants in the world'. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features. This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory. Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory.
    Annals of Botany 09/2011; 109(1):47-64. DOI:10.1093/aob/mcr249 · 3.30 Impact Factor
  • Source
  • Nature 01/2002; DOI:10.1038/news020101-4 · 42.35 Impact Factor
Show more