Promyelocytic leukemia protein induces apoptosis due to caspase-8 activation via the repression of NFkappaB activation in glioblastoma.

Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
Neuro-Oncology (Impact Factor: 6.18). 10/2008; 11(2):132-41. DOI: 10.1215/15228517-2008-083
Source: PubMed

ABSTRACT Promyelocytic leukemia (PML) protein plays an essential role in the induction of apoptosis; its expression is reduced in various cancers. As the functional roles of PML in glioblastoma multiforme (GBM) have not been clarified, we assessed the expression of PML protein in GBM tissues and explored the mechanisms of PML-regulated cell death in GBM cells. We examined the PML mRNA level and the expression of PML protein in surgical GBM specimens. PML-regulated apoptotic mechanisms in GBM cells transfected with plasmids expressing the PML gene were examined. The protein expression of PML was significantly lower in GBM than in non-neoplastic tissues; approximately 10% of GBM tissues were PML-null. The PML mRNA levels were similar in both tissue types. The overexpression of PML activated caspase-8 and induced apoptosis in GBM cells. In these cells, PML decreased the expression of transactivated forms of NFkappaB/p65, and c-FLIP gene expression was suppressed. Therefore, PML-induced apoptosis resulted from the suppression of the transcriptional activity of NFkappaB/p65. PML overexpression decreased phosphorylated IkappaBalpha and nuclear NFkappaB/p65 and increased the expression of the suppressor of cytokine signaling (SOCS-1). A proteasome inhibitor blocked the reduction of activated p65 by PML. The reduction of PML is associated with the pathogenesis of GBM. PML induces caspase-8-dependent apoptosis via the repression of NFkappaB activation by which PML facilitates the proteasomal degradation of activated p65 and the sequestration of p65 with IkappaBalpha in the cytoplasm. This novel mechanism of PML-regulated apoptosis may represent a therapeutic target for GBM.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant gliomas are diffusively infiltrative and remain among the deadliest of all cancers. NF-κB is a transcription factor that mediates cell growth, migration and invasion, angiogenesis and resistance to apoptosis. Normally, the activity of NF-κB is tightly regulated by numerous mechanisms. However, in many cancers, NF-κB is constitutively activated and may function as a tumor promoter. Herein, we show that in gliomas, NF-κB is constitutively activated and the levels of cIAP2, Bcl-2, Bcl-xL and Survivin are elevated. These genes are regulated by NF-κB and can inhibit apoptosis. To understand the potential role of NF-κB p65 in suppressing apoptosis, we generated human glioma cell lines that inducibly express shRNA molecules specific for p65. We demonstrate that in the absence of p65, TNF-α induced cIAP2 expression is significantly reduced while the levels of Bcl-2, Bcl-xL and Survivin are not affected. These data suggest that of these genes, only cIAP2 is a direct target of p65, which was confirmed using RT-PCR and chromatin immunoprecipitation (ChIP) assays. By reducing the levels of p65 and/or cIAP2 levels, we demonstrate that the levels of RIP poly-ubiquitination are reduced, and that p65-deficient glioma cells are more sensitive to the cytotoxic effects of TNF-α. Specifically, in the presence of TNF-α glioma cells lacking p65 and/or cIAP2 showed cellular proliferation defects and underwent cell death. These data suggest that NF-κB and/or cIAP2 may be therapeutically relevant targets for the treatment of malignant gliomas.
    Journal of Neuro-Oncology 01/2011; 102(3):367-81. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small ubiquitin-like modifier (SUMO) conjugation and interaction are increasingly associated with various cellular processes. However, little is known about the cellular signaling mechanisms that regulate proteins for distinct SUMO paralog conjugation and interactions. Using the transcriptional coregulator Daxx as a model, we show that SUMO paralog-selective binding and conjugation are regulated by phosphorylation of the Daxx SUMO-interacting motif (SIM). NMR structural studies show that Daxx (732)E-I-I-V-L-S-D-S-D(740) is a bona fide SIM that binds to SUMO-1 in a parallel orientation. Daxx-SIM is phosphorylated by CK2 kinase at residues S737 and S739. Phosphorylation promotes Daxx-SIM binding affinity toward SUMO-1 over SUMO-2/3, causing Daxx preference for SUMO-1 conjugation and interaction with SUMO-1-modified factors. Furthermore, Daxx-SIM phosphorylation enhances Daxx to sensitize stress-induced cell apoptosis via antiapoptotic gene repression. Our findings provide structural insights into the Daxx-SIM:SUMO-1 complex, a model of SIM phosphorylation-enhanced SUMO paralog-selective modification and interaction, and phosphorylation-regulated Daxx function in apoptosis.
    Molecular cell 04/2011; 42(1):62-74. · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tripartite motif containing 22 (TRIM22), a member of the TRIM/RBCC family, has been reported to activate the nuclear factor-kappa B (NF-κB) pathway in unstimulated macrophage cell lines, but the detailed mechanisms governing this activation remains unclear. We investigated this mechanism in HEK293T cells. We found that overexpression of TRIM22 could activate the NF-κB pathway and conversely, could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-κB pathway in HEK293T cells. Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6, and interact with and degrade transforming growth factor-β activated kinase 1 binding protein 2 (TAB2), and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant. Collectively, our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-κB pathway by interacting with and degrading TAB2.
    Virologica Sinica 06/2013;

Full-text (2 Sources)

Available from
Aug 7, 2014