Promyelocytic leukemia protein induces apoptosis due to caspase-8 activation via the repression of NFkappaB activation in glioblastoma.

Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
Neuro-Oncology (Impact Factor: 6.18). 10/2008; 11(2):132-41. DOI: 10.1215/15228517-2008-083
Source: PubMed

ABSTRACT Promyelocytic leukemia (PML) protein plays an essential role in the induction of apoptosis; its expression is reduced in various cancers. As the functional roles of PML in glioblastoma multiforme (GBM) have not been clarified, we assessed the expression of PML protein in GBM tissues and explored the mechanisms of PML-regulated cell death in GBM cells. We examined the PML mRNA level and the expression of PML protein in surgical GBM specimens. PML-regulated apoptotic mechanisms in GBM cells transfected with plasmids expressing the PML gene were examined. The protein expression of PML was significantly lower in GBM than in non-neoplastic tissues; approximately 10% of GBM tissues were PML-null. The PML mRNA levels were similar in both tissue types. The overexpression of PML activated caspase-8 and induced apoptosis in GBM cells. In these cells, PML decreased the expression of transactivated forms of NFkappaB/p65, and c-FLIP gene expression was suppressed. Therefore, PML-induced apoptosis resulted from the suppression of the transcriptional activity of NFkappaB/p65. PML overexpression decreased phosphorylated IkappaBalpha and nuclear NFkappaB/p65 and increased the expression of the suppressor of cytokine signaling (SOCS-1). A proteasome inhibitor blocked the reduction of activated p65 by PML. The reduction of PML is associated with the pathogenesis of GBM. PML induces caspase-8-dependent apoptosis via the repression of NFkappaB activation by which PML facilitates the proteasomal degradation of activated p65 and the sequestration of p65 with IkappaBalpha in the cytoplasm. This novel mechanism of PML-regulated apoptosis may represent a therapeutic target for GBM.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant astrocytomas, the most common primary brain tumors, are predominantly fatal. Improved treatments will require a better understanding of the biological features of high-grade astrocytomas. To better understand the role of neuronal PAS 3 (NPAS3) in diseases in human beings, it was investigated as a candidate for astrocytomagenesis based on the presence of aberrant protein expression in greater than 70% of a human astrocytoma panel (n = 433) and most notably in surgically resected malignant lesions. In subsequent functional studies, it was concluded that NPAS3 exhibits features of a tumor-suppressor, which drives the progression of astrocytomas by modulating the cell cycle, proliferation, apoptosis, and cell migration/invasion and has a further influence on the viability of endothelial cells. Of clinical importance, absence of NPAS3 expression in glioblastomas was a significantly negative prognostic marker of survival. In addition, malignant astrocytomas lacking NPAS3 expression demonstrated loss of function mutations, which were associated with loss of heterozygosity. While overexpressed NPAS3 in malignant glioma cell lines significantly suppressed transformation, the converse decreased expression considerably induced more aggressive growth. In addition, knockdown NPAS3 expression in a human astrocyte cell line in concert with the human papillomavirus E6 and E7 oncogenes induced growth of malignant astrocytomas. In conclusion, NPAS3 drives the progression of human malignant astrocytomas as a tumor suppressor and is a negative prognostication marker for survival.
    American Journal Of Pathology 07/2011; 179(1):462-76. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small ubiquitin-like modifier (SUMO) conjugation and interaction are increasingly associated with various cellular processes. However, little is known about the cellular signaling mechanisms that regulate proteins for distinct SUMO paralog conjugation and interactions. Using the transcriptional coregulator Daxx as a model, we show that SUMO paralog-selective binding and conjugation are regulated by phosphorylation of the Daxx SUMO-interacting motif (SIM). NMR structural studies show that Daxx (732)E-I-I-V-L-S-D-S-D(740) is a bona fide SIM that binds to SUMO-1 in a parallel orientation. Daxx-SIM is phosphorylated by CK2 kinase at residues S737 and S739. Phosphorylation promotes Daxx-SIM binding affinity toward SUMO-1 over SUMO-2/3, causing Daxx preference for SUMO-1 conjugation and interaction with SUMO-1-modified factors. Furthermore, Daxx-SIM phosphorylation enhances Daxx to sensitize stress-induced cell apoptosis via antiapoptotic gene repression. Our findings provide structural insights into the Daxx-SIM:SUMO-1 complex, a model of SIM phosphorylation-enhanced SUMO paralog-selective modification and interaction, and phosphorylation-regulated Daxx function in apoptosis.
    Molecular cell 04/2011; 42(1):62-74. · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tripartite motif containing 22 (TRIM22), a member of the TRIM/RBCC family, has been reported to activate the nuclear factor-kappa B (NF-κB) pathway in unstimulated macrophage cell lines, but the detailed mechanisms governing this activation remains unclear. We investigated this mechanism in HEK293T cells. We found that overexpression of TRIM22 could activate the NF-κB pathway and conversely, could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-κB pathway in HEK293T cells. Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6, and interact with and degrade transforming growth factor-β activated kinase 1 binding protein 2 (TAB2), and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant. Collectively, our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-κB pathway by interacting with and degrading TAB2.
    Virologica Sinica 06/2013;

Full-text (2 Sources)

Available from
Aug 7, 2014