Article

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

[1] Psychiatric and Neurodevelopmental Genetics Unit, [2] Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.
Nature (Impact Factor: 42.35). 06/2009; 460(7256):748-752. DOI: 10.1038/nature08185
Source: PubMed

ABSTRACT Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%

Full-text

Available from: Naomi R Wray, Apr 21, 2015
2 Followers
 · 
225 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Today multinational studies using genome-wide association scan (GWAS) for >1000,000 polymorphisms on >100,000 cases with major psychiatric diseases versus controls, combined with next-generation sequencing have found ~100 genetic polymorphisms associated with schizophrenia (SCZ), bipolar disorder (BD), autism, attention deficit and hyperactivity disorder (ADHD), etc. However, the effect size of each genetic mutation has been generally low (<1%), and altogether could portray a tiny fraction of these mental diseases. Furthermore, none of these polymorphisms was specific to disease phenotypes indicating that they are simply genetic risk factors rather than causal mutations. The lack of identification of the major gene(s) in huge genetic studies increased the tendency for reexamining the roles of environmental factors in psychiatric and other complex diseases. However, this time at cellular/molecular levels mediated by epigenetic mechanisms that are heritable, but reversible while interacting with the environment. Now, gene-specific or whole-genome epigenetic analyses have introduced hundreds of aberrant epigenetic marks in the blood or brain of individuals with psychiatric diseases that include aberrations in DNA methylation, histone modifications and microRNA expression. Interestingly, most of the current psychiatric drugs such as valproate, lithium, antidepressants, antipsychotics and even electroconvulsive therapy (ECT) modulate epigenetic codes. The existing data indicate that, the impacts of environment/nurture, including the uterine milieu and early-life events might be more significant than genetic/nature in most psychiatric diseases. The lack of significant results in large-scale genetic studies led to revise the bolded roles of genetics and now we are at the turning point of genomics for reconsidering environmental factors that through epigenetic mechanisms may impact the brain development/functions causing disease phenotypes.
    Iranian Journal of Psychiatry and Behavioral Sciences 01/2014; 8(3):1-10.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenotype of many regulatory circuits in which mutations can cause complex, polygenic diseases is to some extent robust to DNA mutations that affect circuit components. Here I demonstrate how such mutational robustness can prevent the discovery of genetic disease determinants. To make my case, I use a mathematical model of the insulin signaling pathway implicated in type 2 diabetes, whose signaling output is governed by 15 genetically determined parameters. Using multiple complementary measures of a parameter's importance for this phenotype, I show that any one disease determinant that is crucial in one genetic background will be virtually irrelevant in other backgrounds. In an evolving population that drifts through the parameter space of this or other robust circuits through DNA mutations, the genetic changes that can cause disease will vary randomly over time. I call this phenomenon causal drift. It means that mutations causing disease in one (human or non-human) population may have no effect in another population, and vice versa. Causal drift casts doubt on our ability to infer the molecular mechanisms of complex diseases from non-human model organisms.
    PLoS ONE 03/2015; 10(3):e0118413. DOI:10.1371/journal.pone.0118413 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypofunction of the N-methyl-D-aspartate type glutamate receptor (NMDAR) has been implicated in the pathogenesis of schizophrenia. Here, we investigated the significance of a common human genetic variation of the NMDAR NR3B subunit that inserts 4 bases within the coding region (insCGTT) in the pathogenesis of schizophrenia. The cDNA carrying this polymorphism generates a truncated protein, which is electrophysiologically non-functional in heterologous expression systems. Among 586 schizophrenia patients and 754 healthy controls, insCGTT was significantly overrepresented in patients compared to controls (odds ratio = 1.37, p = 0.035). Among 121 schizophrenia patients and 372 healthy controls, genetic analyses of normal individuals revealed that those carrying insCGTT have a predisposition to schizotypal personality traits (F1,356 = 4.69, p = 0.031). Furthermore, pre-pulse inhibition, a neurobiological trait disturbed in patients with schizophrenia, was significantly impaired in patients carrying insCGTT compared with those with the major allele (F1,116 = 5.72, p = 0.018, F1,238 = 4.46, p = 0.036, respectively). These results indicate that a naturally occurring null variant in NR3B could be a risk factor of schizophrenia.
    PLoS ONE 10(3):e0116319. DOI:10.1371/journal.pone.0116319 · 3.53 Impact Factor