Article

A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas

Department of Biomedical Informatics (DBMI), Columbia University, New York, NY 10032, USA.
Molecular Systems Biology 02/2008; 4(1). DOI: 10.1038/msb.2008.2
Source: PubMed

ABSTRACT The computational identification of oncogenic lesions is still a key open problem in cancer biology. Although several methods have been proposed, they fail to model how such events are mediated by the network of molecular interactions in the cell. In this paper, we introduce a systems biology approach, based on the analysis of molecular interactions that become dysregulated in specific tumor phenotypes. Such a strategy provides important insights into tumorigenesis, effectively extending and complementing existing methods. Furthermore, we show that the same approach is highly effective in identifying the targets of molecular perturbations in a human cellular context, a task virtually unaddressed by existing computational methods. To identify interactions that are dysregulated in three distinct non-Hodgkin's lymphomas and in samples perturbed with CD40 ligand, we use the B-cell interactome (BCI), a genome-wide compendium of human B-cell molecular interactions, in combination with a large set of microarray expression profiles. The method consistently ranked the known gene in the top 20 (0.3%), outperforming conventional approaches in 3 of 4 cases.

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reverse engineering approaches to constructing gene regulatory networks (GRNs) based on genome-wide mRNA expression data have led to significant biological findings, such as the discovery of novel drug targets. However, the reliability of the reconstructed GRNs needs to be improved. Here, we propose an ensemble-based network aggregation approach to improving the accuracy of network topologies constructed from mRNA expression data. To evaluate the performances of different approaches, we created dozens of simulated networks from combinations of gene-set sizes and sample sizes and also tested our methods on three Escherichia coli datasets. We demonstrate that the ensemble-based network aggregation approach can be used to effectively integrate GRNs constructed from different studies - producing more accurate networks. We also apply this approach to building a network from epithelial mesenchymal transition (EMT) signature microarray data and identify hub genes that might be potential drug targets. The R code used to perform all of the analyses is available in an R package entitled "ENA", accessible on CRAN (http://cran.r-project.org/web/packages/ENA/).
    PLoS ONE 11/2014; 9(11):e106319. DOI:10.1371/journal.pone.0106319 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the articles included in this volume, one feels a strong frustration among the writers with the slow course of therapeutics development for Alzheimer's disease and with the clinical failure of targeted therapeutic agents despite substantial progress in our understanding of the biology and biochemistry of the disease.
    Journal of the American Society for Experimental NeuroTherapeutics 01/2015; 12(1). DOI:10.1007/s13311-014-0335-5 · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.
    Genome biology 02/2015; 16(1):68. DOI:10.1186/s13059-015-0593-5 · 10.47 Impact Factor