Article

Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions

Howard Hughes Medical Institute School of Medicine, University of California, San Diego, California 92037, USA.
Nature (Impact Factor: 42.35). 02/2009; 458(7238):591-596.

ABSTRACT Life and death fate decisions allow cells to avoid massive apoptotic death in response to genotoxic stress. Although the regulatory mechanisms and signalling pathways controlling DNA repair and apoptosis are well characterized, the precise molecular strategies that determine the ultimate choice of DNA repair and survival or apoptotic cell death remain incompletely understood. Here we report that a protein tyrosine phosphatase, EYA, is involved in promoting efficient DNA repair rather than apoptosis in response to genotoxic stress in mammalian embryonic kidney cells by executing a damage-signal-dependent dephosphorylation of an H2AX carboxy-terminal tyrosine phosphate (Y142). This post-translational modification determines the relative recruitment of either DNA repair or pro-apoptotic factors to the tail of serine phosphorylated histone H2AX (-H2AX) and allows it to function as an active determinant of repair/survival versus apoptotic responses to DNA damage, revealing an additional phosphorylation-dependent mechanism that modulates survival/apoptotic decisions during mammalian organogenesis.

0 Bookmarks
 · 
80 Views
  • Frontiers in Bioscience 01/2011; 16(1):2086. · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the first anthracycline was discovered, many other related compounds have been studied in order to overcome its defects and improve efficacy. In the present paper, we investigated the anticancer effects of a new anthracycline, aspergiolide A (ASP-A), from a marine-derived fungus in vitro and in vivo, and we evaluated the absorption, distribution, metabolism, and toxicity drug properties in early drug development. We found that ASP-A had activity against topoisomerase II that was comparable to adriamycin. ASP-A decreased the growth of various human cancer cells in vitro and induced apoptosis in BEL-7402 cells via a caspase-dependent pathway. The anticancer efficacy of ASP-A on the growth of hepatocellular carcinoma xenografts was further assessed in vivo. Results showed that, compared with the vehicle group, ASP-A exhibited significant anticancer activity with less loss of body weight. A pharmacokinetics and tissue distribution study revealed that ASP-A was rapidly cleared in a first order reaction kinetics manner, and was enriched in cancer tissue. The maximal tolerable dose (MTD) of ASP-A was more than 400 mg/kg, and ASP-A was not considered to be potentially genotoxic or cardiotoxic, as no significant increase of micronucleus rates or inhibition of the hERG channel was seen. Finally, an uptake and transport assay of ASP-A was performed in monolayers of Caco-2 cells, and ASP-A was shown to be absorbed through the active transport pathway. Altogether, these results indicate that ASP-A has anticancer activity targeting topoisomerase II, with a similar structure and mechanism to adriamycin, but with much lower toxicity. Nonetheless, further molecular structure optimization is necessary.
    Drug Design, Development and Therapy 01/2014; 8:1965-77. · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The phosphorylated form of the histone protein H2AX, called γH2AX, is recognized as a useful biomarker not only for DNA double-strand breaks but also for a wide range of other DNA damage. An increasing number of publications propose γH2AX to be measured when determining genotoxicity, phototoxicity, and the effectiveness of cancer therapy. Because γH2AX is also generated by apoptosis, a γH2AX-assay might assess genotoxic risk incorrectly. The aim of this study was to elucidate the influence of apoptosis on measurements of γH2AX by flow cytometry, with the clastogens mitomycin C (MMC) and etoposide (ETP), and the aneugens vinblastine (VB) and paclitaxel (PT), which do not react directly with DNA. TK6 human lymphoblastoid cells were treated with the clastogens and the aneugens, stained for the apoptotic biomarker caspase-3 and for γH2AX, and then analyzed by flow cytometry. All the test compounds caused a dose-dependent increase of γH2AX-positive (γH2AX+) cells. The γH2AX+ cell population included both caspase-3-positive (γH2AX+/caspase-3+) and caspase-3-negative (γH2AX+/caspase-3-) cells. The increase in γH2AX+ cells after treatment with the aneugens corresponded to the increase in caspase-3+ cells. The increase in γH2AX+/caspase-3- cells after treatment with the clastogens was significant, but there was only a slight increase after treatment with the aneugens. This reflects the fact that the apoptotic pathway of a clastogen starts from DNA damage, whereas that of an aneugen starts from cell-cycle arrest in the M-phase. Therefore, the two pathways contribute differently to apoptosis. Double staining for γH2AX and caspase-3 provided helpful information for the different mechanistic effects of aneugens and clastogens that induce γH2AX.
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis 09/2014; 771C:23-29. · 2.48 Impact Factor

Preview

Download
0 Downloads
Available from