Cost-effectiveness of HIV Monitoring Strategies in Resource-Limited Settings

Center for Health Policy and the Center for Primary Care and Outcomes Research, School of Medicine, Stanford University, 117 Encina Commons, Stanford, CA 94305, USA.
Archives of internal medicine (Impact Factor: 17.33). 10/2008; 168(17):1910-8. DOI: 10.1001/archinternmed.2008.1
Source: PubMed


Although the number of infected persons receiving highly active antiretroviral therapy (HAART) in low- and middle-income countries has increased dramatically, optimal disease management is not well defined.
We developed a model to compare the costs and benefits of 3 types of human immunodeficiency virus monitoring strategies: symptom-based strategies, CD4-based strategies, and CD4 counts plus viral load strategies for starting, switching, and stopping HAART. We used clinical and cost data from southern Africa and performed a cost-effectiveness analysis. All assumptions were tested in sensitivity analyses.
Compared with the symptom-based approaches, monitoring CD4 counts every 6 months and starting treatment at a threshold of 200/muL was associated with a gain in life expectancy of 6.5 months (61.9 months vs 68.4 months) and a discounted lifetime cost savings of US $464 per person (US $4069 vs US $3605, discounted 2007 dollars). The CD4-based strategies in which treatment was started at the higher threshold of 350/microL provided an additional gain in life expectancy of 5.3 months at a cost-effectiveness of US $107 per life-year gained compared with a threshold of 200/microL. Monitoring viral load with CD4 was more expensive than monitoring CD4 counts alone, added 2.0 months of life, and had an incremental cost-effectiveness ratio of US $5414 per life-year gained relative to monitoring of CD4 counts. In sensitivity analyses, the cost savings from CD4 count monitoring compared with the symptom-based approaches was sensitive to cost of inpatient care, and the cost-effectiveness of viral load monitoring was influenced by the per test costs and rates of virologic failure.
Use of CD4 monitoring and early initiation of HAART in southern Africa provides large health benefits relative to symptom-based approaches for HAART management. In southern African countries with relatively high costs of hospitalization, CD4 monitoring would likely reduce total health care expenditures. The cost-effectiveness of viral load monitoring depends on test prices and rates of virologic failure.

11 Reads
  • Source
    • "Our Markov model included several significant improvements on previously published models [4], [18]–[22]. First, we separated out the first six months on ART, as outcomes and costs in this period are driven by baseline CD4 count and program protocols (higher frequency of clinic visits and toxicity monitoring) [6]. Second, we developed a novel LTFU model, in which patients transitioned between ART and LTFU, changed baseline CD4 count within LTFU, and transitioned to death within LTFU. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Providing private antiretroviral therapy (ART) care for public sector patients could increase access to ART in low- and middle-income countries. We compared the costs and outcomes of a private-care and a public-care ART program in South Africa. A novel Markov model was developed from the public-care program. Patients were first tunneled for 6 months in their baseline CD4 category before being distributed into a dynamic CD4 and viral load model. Patients were allowed to return to ART care from loss to follow up (LTFU). We then populated this modeling framework with estimates derived from the private-care program to externally validate the model. Baseline characteristics were similar in the two programs. Clinic visit utilization was higher and death rates were lower in the first few years on ART in the public-care program. After 10 years on ART we estimated the following outcomes in the public-care and private-care programs respectively: viral load <1000 copies/ml 89% and 84%, CD4 >500 cells/μl 33% and 37%, LTFU 14% and 14%, and death 27% and 32%. Lifetime undiscounted survival estimates were 14.1 (95%CI 13.2-14.9) and (95%CI 12.7-14.5) years with costs of 18,734 (95%CI 12,588-14,022) and 13,062 (95%CI 12,077-14,047) USD in the private-care and public-care programs respectively. When clinic visit utilization in the public-care program was reduced by two thirds after the initial 6 months on ART, which is similar to their current practice, the costs were comparable between the programs. Using a novel Markov model, we determined that the private-care program had similar outcomes but lower costs than the public-care program, largely due to lower visit frequencies. These findings have important implications for increasing and sustaining coverage of patients in need of ART care in resource-limited settings.
    PLoS ONE 02/2013; 8(2):e53570. DOI:10.1371/journal.pone.0053570 · 3.23 Impact Factor
  • Source
    • "c The sensitivity range is not reported in [23]. In our model, we assume a 50% decrease and 50% increase in OI’s relative to the base case. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Ugandan national guidelines recommend initiation of combination antiretroviral therapy (cART) at CD4+ T cell (CD4) count below 350 cell/μl, but the implementation of this is limited due to availability of medication. However, cART initiation at higher CD4 count increases survival, albeit at higher lifetime treatment cost. This analysis evaluates the cost-effectiveness of initiating cART at a CD4 count between 250–350 cell/μl (early) versus <250 cell/μl (delayed). Methods Life expectancy of cART-treated patients, conditional on baseline CD4 count, was modeled based on published literature. First-line cART costs $192 annually, with an additional $113 for patient monitoring. Delaying initiation of cART until the CD4 count falls below 250 cells/μl would incur the cost of the bi-annual CD4 count tests and routine maintenance care at $85 annually. We compared lifetime treatment costs and disability adjusted life-expectancy between early vs. delayed cART for ten baseline CD4 count ranges from 250-350 cell/μl. All costs and benefits were discounted at 3% annually. Results Treatment delay varied from 6–18 months. Early cART initiation increased life expectancy from 1.5-3.5 years and averted 1.33–3.10 disability adjusted life years (DALY’s) per patient. Lifetime treatment costs were $4,300–$5,248 for early initiation and $3,940–$4,435 for delayed initiation. The cost/DALY averted of the early versus delayed start ranged from $260–$270. Conclusions In HIV-positive patients presenting with CD4 count between 250-350 cells/μl, immediate initiation of cART is a highly cost-effective strategy using the recommended one-time per capita GDP threshold of $490 reported for Uganda. This would constitute an efficient use of scarce health care funds.
    BMC Public Health 09/2012; 12(1):736. DOI:10.1186/1471-2458-12-736 · 2.26 Impact Factor
  • Source
    • "We assumed that 60% of these individuals sought ART care quickly, conservatively one year before they would have otherwise [26]. We estimated the resulting averted DALYs at 0.75, from clinical modeling studies [37], [38]. Lifetime increased use of ART due to the IPC (e.g., by avoiding death before HIV diagnosis) is estimated at 15%, based on expert opinion (author JM) considering current and projected lifetime prevalence of ART use. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficiently delivered interventions to reduce HIV, malaria, and diarrhea are essential to accelerating global health efforts. A 2008 community integrated prevention campaign in Western Province, Kenya, reached 47,000 individuals over 7 days, providing HIV testing and counseling, water filters, insecticide-treated bed nets, condoms, and for HIV-infected individuals cotrimoxazole prophylaxis and referral for ongoing care. We modeled the potential cost-effectiveness of a scaled-up integrated prevention campaign. We estimated averted deaths and disability-adjusted life years (DALYs) based on published data on baseline mortality and morbidity and on the protective effect of interventions, including antiretroviral therapy. We incorporate a previously estimated scaled-up campaign cost. We used published costs of medical care to estimate savings from averted illness (for all three diseases) and the added costs of initiating treatment earlier in the course of HIV disease. Per 1000 participants, projected reductions in cases of diarrhea, malaria, and HIV infection avert an estimated 16.3 deaths, 359 DALYs and $85,113 in medical care costs. Earlier care for HIV-infected persons adds an estimated 82 DALYs averted (to a total of 442), at a cost of $37,097 (reducing total averted costs to $48,015). Accounting for the estimated campaign cost of $32,000, the campaign saves an estimated $16,015 per 1000 participants. In multivariate sensitivity analyses, 83% of simulations result in net savings, and 93% in a cost per DALY averted of less than $20. A mass, rapidly implemented campaign for HIV testing, safe water, and malaria control appears economically attractive.
    PLoS ONE 02/2012; 7(2):e31316. DOI:10.1371/journal.pone.0031316 · 3.23 Impact Factor
Show more

Similar Publications


11 Reads
Available from