A Metabonomics Approach to Assessing the Modulatory Effects of St John's Wort, Ginsenosides and Clomipramine in Experimental Depression.

Journal of Proteome Research (Impact Factor: 5.06). 10/2012; 11(12). DOI: 10.1021/pr300891v
Source: PubMed

ABSTRACT The protective effects of St John's Wort extract (SJ), ginsenosides (GS) and clomipramine (CPM) on chronic unpredictable mild stress (CUMS)-induced depression in rats were investigated by using a combination of behavioral assessments and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. During and at the endpoint of the chronic stress experiment, food consumption, body weight, adrenal gland, thymus and spleen indices, behavior scores, sucrose consumption, and stress hormone levels were measured. Changes in these parameters reflected characteristic phenotypes of depression in rats. Metabonomic analysis of serum, urine, and brain tissue revealed that CPM and SJ mainly attenuated the alteration of monoamine neurotransmitter metabolites, while GS affected both excitatory/inhibitory amino acids and monoamine neurotransmitter metabolites. GS also attenuated the stress-induced alterations in cerebrum and peripheral metabolites to a greater extent than CPM and SJ. These results provide important mechanistic insights into the protective effects of GS against CUMS-induced depression and metabolic dysfunction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous stereotypic behaviour (SB) is common in many captive animal species, as well as in humans with some severe psychiatric disorders, and is often cited as being related to general basal ganglia dysfunction. Despite this assertion, there is little in the literature examining SB specifically in terms of the basal ganglia mechanics. In this review, we attempt to fill this gap by offering an integrative, cross-domain perspective of SB by linking what we currently understand about the SB phenotype with the ever-growing literature on the anatomy and functionality of the basal ganglia. After outlining current models of SB from different theoretical perspectives, we offer a broad but detailed overview of normally functioning basal ganglia mechanics, and attempt to link this with current neurophysiological evidence related to spontaneous SB. Based on this we present an empirically derived theoretical framework, which proposes that SB is the result of a dysfunctional action selection system that may reflect dysregulation of excitatory (direct) and inhibitory (indirect and hyperdirect) pathways as well as alterations in mechanisms of behavioural switching. This approach also suggests behaviours that specifically become stereotypic may reflect inbuilt low selection threshold behavioural sequences associated with early development and the species-specific ethogram or, low threshold behavioural sequences that are the result of stress-induced dopamine exposure at the time of performance.
    Behavioural Brain Research 06/2014; DOI:10.1016/j.bbr.2014.05.057 · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Invasive, site-specific metabolite information could be better obtained from tissues. Hence, highly sensitive mass spectrometry-based metabolomics coupled with separation techniques are increasingly in demand in clinical research for tissue metabolomics application. Applying these techniques to nontargeted tissue metabolomics provides identification of distinct metabolites. These findings could help us to understand alterations at the molecular level, which can also be applied in clinical practice as screening markers for early disease diagnosis. However, tissues as solid and heterogeneous samples pose an additional analytical challenge that should be considered in obtaining broad, reproducible and representative analytical profiles. This manuscript summarizes the state of the art in tissue (human and animal) treatment (quenching, homogenization and extraction) for nontargeted metabolomics with mass spectrometry.
    Bioanalysis 06/2014; 6(12):1657-1677. DOI:10.4155/bio.14.119 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics was applied to a C57BL/6N mouse model of chronic unpredictable mild stress (CMS). Such mice were treated with two antidepressants from different categories: fluoxetine and imipramine. Metabolic profiling of the hippocampus was performed using gas chromatography-mass spectrometry analysis on samples prepared under optimized conditions, followed by principal component analysis, partial least squares-discriminant analysis, and pair-wise orthogonal projections to latent structures discriminant analyses. Body weight measurement and behavior tests including an open field test and the forced swimming test were completed with the mice as a measure of the phenotypes of depression and antidepressive effects. As a result, 23 metabolites that had been differentially expressed among the control, CMS, and antidepressant-treated groups demonstrated that amino acid metabolism, energy metabolism, adenosine receptors, and neurotransmitters are commonly perturbed by drug treatment. Potential predictive markers for treatment effect were identified: myo-inositol for fluoxetine and lysine and oleic acid for imipramine. Collectively, the current study provides insights into the molecular mechanisms of the antidepressant effects of two widely used medications.
    Scientific Reports 03/2015; 5:8890. DOI:10.1038/srep08890 · 5.08 Impact Factor