Article

Metabolic Perturbance in Autism Spectrum Disorders: A Metabolomics Study

Journal of Proteome Research (Impact Factor: 5). 10/2012; 11(12). DOI: 10.1021/pr300910n
Source: PubMed

ABSTRACT Autism spectrum disorders (ASD) are a group of biological disorders with associated metabolic derangement. This study aimed to identify a pattern of metabolic perturbance in ASD using metabolomics in urinary specimens from 48 children with ASD and 53 age matched controls. Using a combination of liquid- and gas-chromatography-based mass spectrometry, we detected the levels of 82 metabolites (53 of which were increased) that were significantly altered between the ASD and the control groups using osmolality normalized data. Pattern analysis showed that the levels of several amino acids such as glycine, serine, threonine, alanine, histidine, glutamyl amino acids and the organic acid, taurine were significantly (p≤0.05) lower in ASD children. The levels of antioxidants such as carnosine were also reduced in ASD (p=0.054). Furthermore, several gut bacterial metabolites were significantly altered in ASD children who had gastrointestinal dysfunction. Overall, this study detected abnormal amino acid metabolism, increased oxidative stress, and altered gut microbiomes in ASD. The relationship of altered gut microbial co-metabolism and the disrupted metabolisms requires further investigation.

Full-text

Available from: Xue Ming, Jan 28, 2015
1 Follower
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There has been considerable interest in composition of gut microbiota in recent years, lead-ing to a better understanding of the role the gut microbiota plays in health and disease. Most studies have been limited in their geographical and socioeconomic diversity to high-income settings, and have been conducted using small sample sizes. To date, few analyses have been conducted in low-income settings, where a better understanding of the gut microbiome could lead to the greatest return in terms of health benefits. Here, we have used quantitative real-time polymerase chain reaction targeting dominant and sub-dominant groups of micro-organisms associated with human gut microbiome in 115 people living a subsistence life-style in rural areas of Papua New Guinea. Quantification of Clostridium coccoides group, C. leptum subgroup, C. perfringens, Bacteroides fragilis group, Bifidobacterium, Atopo-bium cluster, Prevotella, Enterobacteriaceae, Enterococcus, Staphylococcus, and Lacto-bacillus spp. was conducted. Principle coordinates analysis (PCoA) revealed two dimensions with Prevotella, clostridia, Atopobium, Enterobacteriaceae, Enterococcus and Staphylococcus grouping in one dimension, while B. fragilis, Bifidobacterium and Lactoba-cillus grouping in the second dimension. Highland people had higher numbers of most groups of bacteria detected, and this is likely a key factor for the differences revealed by PCoA between highland and lowland study participants. Age and sex were not major determinants in microbial population composition. The study demonstrates a gut microbial composition with some similarities to those observed in other low-income settings where traditional diets are consumed, which have previously been suggested to favor energy extraction from a carbohydrate rich diet.
    PLoS ONE 02/2015; 10(2). DOI:10.1371/journal.pone.0117427 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perturbations in the prenatal and early life environment can contribute to the development of offspring stress dysregulation, a pervasive symptom in neuropsychiatric disease. Interestingly, the vertical transmission of maternal microbes to offspring and the subsequent bacterial colonization of the neonatal gut overlap with a critical period of brain development. Therefore, environmental factors such as maternal stress that are able to alter microbial populations and their transmission can thereby shape offspring neurodevelopment. As the neonatal gastrointestinal tract is primarily inoculated at parturition through the ingestion of maternal vaginal microflora, disruption in the vaginal ecosystem may have important implications for offspring neurodevelopment and disease risk. Here, we discuss alterations that occur in the vaginal microbiome following maternal insult and the subsequent effects on bacterial assembly of the neonate gut, the production of neuromodulatory metabolites, and the developmental course of stress regulation.
    01/2015; 1:81-88. DOI:10.1016/j.ynstr.2014.10.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut-brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut-brain interactions could also be a direct result of microbially produced metabolites.
    Microbial Ecology in Health and Disease 03/2015; 26:26914. DOI:10.3402/mehd.v26.26914