Article

G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment.

Molecular and Cell Biology (MCB) Program.
Genes & development (Impact Factor: 12.64). 10/2012; DOI: 10.1101/gad.200329.112
Source: PubMed

ABSTRACT G9a and GLP are conserved protein methyltransferases that play key roles during mammalian development through mono- and dimethylation of histone H3 Lys 9 (H3K9me1/2), modifications associated with transcriptional repression. During embryogenesis, large H3K9me2 chromatin territories arise that have been proposed to reinforce lineage choice by affecting high-order chromatin structure. Here we report that in adult human hematopoietic stem and progenitor cells (HSPCs), H3K9me2 chromatin territories are absent in primitive cells and are formed de novo during lineage commitment. In committed HSPCs, G9a/GLP activity nucleates H3K9me2 marks at CpG islands and other genomic sites within genic regions, which then spread across most genic regions during differentiation. Immunofluorescence assays revealed the emergence of H3K9me2 nuclear speckles in committed HSPCs, consistent with progressive marking. Moreover, gene expression analysis indicated that G9a/GLP activity suppresses promiscuous transcription of lineage-affiliated genes and certain gene clusters, suggestive of regulation of HSPC chromatin structure. Remarkably, HSPCs continuously treated with UNC0638, a G9a/GLP small molecular inhibitor, better retain stem cell-like phenotypes and function during in vitro expansion. These results suggest that G9a/GLP activity promotes progressive H3K9me2 patterning during HSPC lineage specification and that its inhibition delays HSPC lineage commitment. They also inform clinical manipulation of donor-derived HSPCs.

1 Bookmark
 · 
223 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore, discovery of PMT inhibitors has also been pursued increasingly over the last decade. Here we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
    Journal of Medicinal Chemistry 11/2014; DOI:10.1021/jm501234a · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this issue of Cell Stem Cell, Savić et al. (2014) and Kim et al. (2014) provide insight into how global heterochromatin condensation and LIN28 sequestration in embryonic stem cells are independent mechanisms regulating pluripotency in the oft-overlooked nucleolus. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cell Stem Cell 12/2014; 15(6):675-6. DOI:10.1016/j.stem.2014.11.017 · 22.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: nvestigations into the genomic landscape of histone modifications in heterochromatic regions have revealed histone H3 lysine 9 dimethylation (H3K9me2) to be important for differentiation and maintaining cell identity. H3K9me2 is associated with gene silencing and is organized into large repressive domains that exist in close proximity to active genes, indicating the importance of maintenance of proper domain structure. Here we show that nickel, a nonmutagenic environmental carcinogen, disrupted H3K9me2 domains, resulting in the spreading of H3K9me2 into active regions, which was associated with gene silencing. We found weak CCCTC-binding factor (CTCF)-binding sites and reduced CTCF binding at the Ni-disrupted H3K9me2 domain boundaries, suggesting a loss of CTCF-mediated insulation function as a potential reason for domain disruption and spreading. We furthermore show that euchromatin islands, local regions of active chromatin within large H3K9me2 domains, can protect genes from H3K9me2-spreading–associated gene silencing. These results have major implications in understanding H3K9me2 dynamics and the consequences of chromatin domain disruption during pathogenesis.
    Proceedings of the National Academy of Sciences 08/2014; 111(40). DOI:10.1073/pnas.1406923111 · 9.81 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
May 30, 2014