Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: Field cancerization or contaminating tumor cells?

Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Breast Cancer Research and Treatment (Impact Factor: 3.94). 10/2012; 136(3). DOI: 10.1007/s10549-012-2290-3
Source: PubMed


Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1–3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor–normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25–200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue.

Electronic supplementary material
The online version of this article (doi:10.1007/s10549-012-2290-3) contains supplementary material, which is available to authorized users.

Download full-text


Available from: Anguraj Sadanandam, Jan 29, 2014
35 Reads
    • "00, No. 0, 1–12, 2015 numerous controversies and criticism [Euhus et al., 2002; Cavalli et al., 2004; Larson et al., 2005; Clarke et al., 2006; Larson et al., 2006; Ellsworth et al., 2010; Rennstam et al., 2010]. Specifically, genomic instability triggered by neoadjuvant therapy, contamination by tumor cells, and technical artifacts were considered the reasons for the apparent CNAs in nontumor mammary glandular tissue [Holliday et al., 2009; Rummel et al., 2012; Sadanandam et al., 2012]. In the current study, patients with any preoperative exposure to radio or chemotherapy were excluded. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic mosaicism for DNA copy number alterations (SMC-CNAs) is defined as gain or loss of chromosomal segments in somatic cells within a single organism. As cells harboring SMC-CNAs can undergo clonal expansion, it has been proposed that SMC-CNAs may contribute to the predisposition of these cells to genetic disease including cancer. Herein, the gross genomic alterations (>500 kbp) were characterized in uninvolved mammary glandular tissue from 59 breast cancer patients and matched samples of primary tumors and lymph node metastases. Array based comparative genomic hybridization showed 10% (6/59) of patients harbored 1 - 359 large SMC-CNAs (mean: 1328 kbp; median: 961 kbp) in a substantial portion of glandular tissue cells, distal from the primary tumor site. SMC-CNAs were partially recurrent in tumors, albeit with considerable contribution of stochastic SMC-CNAs indicating genomic destabilization. Targeted resequencing of 301 known predisposition and somatic driver loci revealed mutations and rare variants in genes related to maintenance of genomic integrity: BRCA1 (p.Gln1756Profs*74, p.Arg504Cys), BRCA2 (p.Asn3124Ile), NCOR1 (p.Pro1570Glnfs*45), PALB2 (p.Ser500Pro) and TP53 (p.Arg306*). Co-occurrence of gross SMC-CNAs along with point mutations or rare variants in genes responsible for safeguarding genomic integrity highlights the temporal and spatial neoplastic potential of uninvolved glandular tissue in breast cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Human Mutation 07/2015; DOI:10.1002/humu.22845 · 5.14 Impact Factor
  • Source
    • "To analyze the spliced sB7-H3 in hepatoma and peritumor tissues, 25 of 50 HCC patients who had undergone surgical resection were enrolled. Solid hepatoma tissues and peritumor tissues were excised about 1 cm but no more than 3 cm away from the invasive tumor margin, as previously reported [27], [28]; samples were snap-frozen in liquid nitrogen for RNA extraction and subsequent cDNA synthesis. To analyze the influence of hepatoma on the level of spliced sB7-H3 in serum, 10 HCC patients who had undergone surgical resection were enrolled, and their sera obtained before resection and 2 weeks after were analyzed for spliced sB7-H3 by sandwich ELISA assay. "
    [Show abstract] [Hide abstract]
    ABSTRACT: B7-H3 is a recently discovered member of the B7 superfamily molecules and has been found to play a negative role in T cell responses. In this study, we identified a new B7-H3 isoform that is produced by alternative splicing from the forth intron of B7-H3 and encodes the sB7-H3 protein. Protein sequence analysis showed that sB7-H3 contains an additional four amino acids, encoded by the intron sequence, at the C-terminus compared to the ectodomain of 2Ig-B7-H3. We further found that this spliced sB7-H3 plays a negative regulatory role in T cell responses and serum sB7-H3 is higher in patients with hepatocellular carcinoma (HCC) than in healthy donors. Furthermore, we found that the expression of the spliced sb7-h3 gene is higher in carcinoma and peritumor tissues than in PBMCs of both healthy controls and patients, indicating that the high level of serum sB7-H3 in patients with HCC is caused by the increased expression of this newly discovered spliced sB7-H3 isoform in carcinoma and peritumor tissues.
    PLoS ONE 10/2013; 8(10):e76965. DOI:10.1371/journal.pone.0076965 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA), we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a) tumors than normal samples, (b) RNA than DNA samples, and (c) the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5'-UTR and 3'-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome.
    PLoS Computational Biology 06/2013; 9(6):e1003107. DOI:10.1371/journal.pcbi.1003107 · 4.62 Impact Factor
Show more