Regulation of Pluripotency and Cellular Reprogramming by the Ubiquitin-Proteasome System

Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
Cell stem cell (Impact Factor: 22.15). 10/2012; 11(6). DOI: 10.1016/j.stem.2012.09.011
Source: PubMed

ABSTRACT Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency. Moreover, using UPS-targeted RNAi screens, we identify additional regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme Psmd14 and the E3 ligase Fbxw7, and characterize their importance in ESC pluripotency and cellular reprogramming. This global characterization of the UPS as a key regulator of stem cell pluripotency opens the way for future studies that focus on specific UPS enzymes or ubiquitinated substrates.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem (iPS) cells and various specialized cells directly from somatic cells of different species. Recent studies dissecting the molecular mechanisms of reprogramming have methodologically improved the quality, ease and efficiency of reprogramming and eliminated the need for genome modifications with integrating viral vectors. With these advancements, direct reprogramming technology has moved closer to clinical application. Here, we provide a comprehensive overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency, strategies to enhance reprogramming efficiency, and chemical reprogramming as one of the non-integrating approaches in iPS cell generation. In addition to direct transdifferentiation, pluripotency factor-induced transdifferentiation or cell activation and signaling directed (CASD) lineage conversion is described as a robust strategy for the generation of both tissue-specific progenitors and clinically relevant cell types. Then, we consider the possibility that a combined method of inhibition of roadblocks (e.g. p53, p21, p57, Mbd3, etc.), and application of enhancing factors in a chemical reprogramming paradigm would be a safe, reliable and effective approach in pluripotent reprogramming and transdifferentiation. Furthermore, with respect to the state of native, aberrant, and target gene regulatory networks in reprogrammed cell populations, CellNet is reviewed as a computational platform capable of evaluating the fidelity of reprogramming methods and refining current engineering strategies. Ultimately, we conclude that a faithful, highly efficient and integration-free reprogramming paradigm would provide powerful tools for research studies, drug-based induced regeneration, cell transplantation therapies and other regenerative medicine purposes.
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is ample evidence that the ubiquitin-proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover, proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells, acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein, we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4, and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog, but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion, our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however, efficient colony formation requires proteasome activity. Therefore, discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells.
    04/2015; 17(2):95-105. DOI:10.1089/cell.2014.0030