Article

Patient-specific instrumentation for total knee arthroplasty: a review.

Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
Orthopedic Clinics of North America (Impact Factor: 1.7). 11/2012; 43(5):e17-22. DOI: 10.1016/j.ocl.2012.07.004
Source: PubMed

ABSTRACT Patient-specific instrumentation is a new technology that offers increased surgical accuracy, which could decrease outliers, increased efficiency, involving fewer steps and shorter surgical times, and has the potential for cost-effectiveness, if overall surgical volume can be increased and future revision rates can be decreased. As with all technology, further studies are necessary, but there is much interest in this technology as medicine enters the age of increased patient burden and an increased emphasis on efficiency.

3 Followers
 · 
162 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.
    04/2015; 6(2):290-297. DOI:10.5312/wjo.v6.i2.290
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patient-specific instrumentation in TKA has the proposed benefits of improving coronal and sagittal alignment and rotation of the components. In contrast, the literature is inconsistent if the use of patient-specific instrumentation improves alignment in comparison to conventional instrumentation. Depending on the manufacturer, patient-specific instrumentation is based on either MRI or CT scans. However, it is unknown whether one patient-specific instrumentation approach is more accurate than the other and if there is a potential benefit in terms of reduction of duration of surgery.
    Clinical Orthopaedics and Related Research 07/2014; 472(10). DOI:10.1007/s11999-014-3784-6 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Custom cutting guides (CCGs; sometimes called patient-specific instrumentation [PSI]) in total knee arthroplasty (TKA) use preoperative three-dimensional imaging to fabricate cutting blocks specific to a patient's native anatomy. The purposes of this study were to determine if CCGs (1) improve clinical outcomes as measured by UCLA activity, SF-12, and Oxford knee scores; and (2) coronal mechanical alignment versus standard alignment guides. This was a retrospective cohort study of patients undergoing primary TKA using the same cruciate-retaining, cemented TKA system between January 2009 and April 2012. Patients were included if they were candidates for a unilateral, cruciate-retaining TKA and met other prespecified criteria; patients were allowed to self-select either an MRI-based CCG procedure or standard TKA. Ninety-seven of 120 (80.8%) patients in the standard and 104 of 124 (83.9%, p = 0.5) in the CCG cohort with a minimum of 1-year followup were available for analysis. The first 95 patients in the standard (mean followup, 3 years; range, 1-4 years) and CCG (mean followup, 2 years; range, 1-4 years) cohorts were compared. The alignment goal for all TKAs was a hip-knee-ankle (HKA) angle of 0°. UCLA, SF-12, and Oxford knee scores were collected preoperatively and at each patient's most recent followup visit. Postoperative, rotationally controlled coronal scout CT scans were used to measure HKA alignment. Independent-sample t-tests and chi-square tests were used for comparisons with a p value ≤ 0.05 considered significant. At the most recent followup, no differences were present between the two cohorts for range of motion (114° ± 14° in CCG versus 115° ± 15° in standard, p = 0.7), UCLA (6 ± 2 in CCG versus 6 ± 2 in standard, p = 0.7), SF-12 physical (44 ± 12 in CCG versus 41 ± 12 in standard, p = 0.07), or Oxford knee scores (39 ± 9 in CCG versus 37 ± 10 in standard, p = 0.1). No differences were present for the incremental improvement in the UCLA (1 ± 4 in CCG versus 1 ± 3 in standard, p = 0.5), SF-12 physical (12 ± 20 in CCG versus 11 ± 21, p = 0.8), or Oxford knee scores (16 ± 9 in CCG versus 19 ± 10 in standard, p = 0.1) from preoperatively to postoperatively. There was no difference in the percentage of outliers for alignment (23% in standard versus 31% in CCG with HKA outside of 0° ± 3°; p = 0.2) between the two cohorts. At a mean followup of greater than 2 years, CCGs fail to demonstrate any advantages in validated knee outcome measure scores or coronal alignment as measured by CT scan versus the use of standard instrumentation in TKA. The clinical benefit of CCGs must be proven before continued implementation of this technology. Level III, retrospective controlled study.
    Clinical Orthopaedics and Related Research 02/2015; DOI:10.1007/s11999-015-4216-y · 2.88 Impact Factor