Article

IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis

Department of Academic and Institutional Resources and Technology, University of North Texas Health Science Center, Fort Worth, USA. .
BMC Bioinformatics (Impact Factor: 2.67). 09/2012; 13 Suppl 15(Suppl 15):S7. DOI: 10.1186/1471-2105-13-S15-S7
Source: PubMed

ABSTRACT Next-Generation Sequencing (NGS) technologies and Genome-Wide Association Studies (GWAS) generate millions of reads and hundreds of datasets, and there is an urgent need for a better way to accurately interpret and distill such large amounts of data. Extensive pathway and network analysis allow for the discovery of highly significant pathways from a set of disease vs. healthy samples in the NGS and GWAS. Knowledge of activation of these processes will lead to elucidation of the complex biological pathways affected by drug treatment, to patient stratification studies of new and existing drug treatments, and to understanding the underlying anti-cancer drug effects. There are approximately 141 biological human pathway resources as of Jan 2012 according to the Pathguide database. However, most currently available resources do not contain disease, drug or organ specificity information such as disease-pathway, drug-pathway, and organ-pathway associations. Systematically integrating pathway, disease, drug and organ specificity together becomes increasingly crucial for understanding the interrelationships between signaling, metabolic and regulatory pathway, drug action, disease susceptibility, and organ specificity from high-throughput omics data (genomics, transcriptomics, proteomics and metabolomics).
We designed the Integrated Pathway Analysis Database for Systematic Enrichment Analysis (IPAD, http://bioinfo.hsc.unt.edu/ipad), defining inter-association between pathway, disease, drug and organ specificity, based on six criteria: 1) comprehensive pathway coverage; 2) gene/protein to pathway/disease/drug/organ association; 3) inter-association between pathway, disease, drug, and organ; 4) multiple and quantitative measurement of enrichment and inter-association; 5) assessment of enrichment and inter-association analysis with the context of the existing biological knowledge and a "gold standard" constructed from reputable and reliable sources; and 6) cross-linking of multiple available data sources.IPAD is a comprehensive database covering about 22,498 genes, 25,469 proteins, 1956 pathways, 6704 diseases, 5615 drugs, and 52 organs integrated from databases including the BioCarta, KEGG, NCI-Nature curated, Reactome, CTD, PharmGKB, DrugBank, PharmGKB, and HOMER. The database has a web-based user interface that allows users to perform enrichment analysis from genes/proteins/molecules and inter-association analysis from a pathway, disease, drug, and organ.Moreover, the quality of the database was validated with the context of the existing biological knowledge and a "gold standard" constructed from reputable and reliable sources. Two case studies were also presented to demonstrate: 1) self-validation of enrichment analysis and inter-association analysis on brain-specific markers, and 2) identification of previously undiscovered components by the enrichment analysis from a prostate cancer study.
IPAD is a new resource for analyzing, identifying, and validating pathway, disease, drug, organ specificity and their inter-associations. The statistical method we developed for enrichment and similarity measurement and the two criteria we described for setting the threshold parameters can be extended to other enrichment applications. Enriched pathways, diseases, drugs, organs and their inter-associations can be searched, displayed, and downloaded from our online user interface. The current IPAD database can help users address a wide range of biological pathway related, disease susceptibility related, drug target related and organ specificity related questions in human disease studies.

Download full-text

Full-text

Available from: Renee Drabier, Aug 28, 2015
0 Followers
 · 
150 Views
  • Source
    • "Pathway analysis is performed using the following databases: Integrated Pathway Analysis Database (IPAD) http://bioinfo.hsc.unt.edu/ipad/[20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past several years, there has been increasing interest and enthusiasm in molecular biomarkers as tools for early detection of cancer. Liquid chromatography tandem mass spectrometry (LC/MS/MS) based plasma proteomics profiling technique is a promising technology platform to study candidate protein biomarkers for early detection of cancer. Factors such as inherent variability, protein detectability limitation, and peptide discovery biases among LC/MS/MS platforms have made the classification and prediction of proteomics profiles challenging. Developing proteomics data analysis methods to identify multi-protein biomarker panels for breast cancer diagnosis based on neural networks provides hope for improving both the sensitivity and the specificity of candidate cancer biomarkers for early detection. In our previous method, we developed a Feed Forward Neural Network-based method to build the classifier for plasma samples of breast cancer and then applied the classifier to predict blind dataset of breast cancer. However, the optimal combination C* in our previous method was actually determined by applying the trained FFNN on the testing set with the combination. Therefore, in this paper, we applied a three way data split to the Feed Forward Neural Network for training, validation and testing based. We found that the prediction performance of the FFNN model based on the three way data split outperforms our previous method and the prediction performance is improved from (AUC = 0.8706, precision = 82.5%, accuracy = 82.5%, sensitivity = 82.5%, specificity = 82.5% for the testing set) to (AUC = 0.895, precision = 86.84%, accuracy = 85%, sensitivity = 82.5%, specificity = 87.5% for the testing set). Further pathway analysis showed that the top three five-marker panels are associated with complement and coagulation cascades, signaling, activation, and hemostasis, which are consistent with previous findings. We believe the new approach is a better solution for multi-biomarker panel discovery and it can be applied to other clinical proteomics.
    BMC proceedings 12/2013; 7(Suppl 7):S10. DOI:10.1186/1753-6561-7-S7-S10
  • Source
    • "The Integrated Pathway Analysis Database (IPAD) (http://bioinfo.hsc.unt.edu/ipad/) [17] is used for pathway analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Detecting breast cancer at early stages can be challenging. Traditional mammography and tissue microarray that have been studied for early breast cancer detection and prediction have many drawbacks. Therefore, there is a need for more reliable diagnostic tools for early detection of breast cancer due to a number of factors and challenges. In the paper, we presented a five-marker panel approach based on SVM for early detection of breast cancer in peripheral blood and show how to use SVM to model the classification and prediction problem of early detection of breast cancer in peripheral blood. We found that the five-marker panel can improve the prediction performance (area under curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the top four five-marker panels are associated with signaling, steroid hormones, metabolism, immune system, and hemostasis, which are consistent with previous findings. Our prediction model can serve as a general model for multibiomarker panel discovery in early detection of other cancers.
    11/2013; 2013:781618. DOI:10.1155/2013/781618
  • Source
    • "IBDsite [8] is a platform to aggregate and analyze biomolecular data involved in inflammatory bowel diseases (IBD). IPAD [9] and Atlas [10] are more general approaches because they aggregate data from several public genomic databases such as KEGG, GenBank, and Uniprot. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. Results We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Conclusions Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans.
    BMC Bioinformatics 06/2013; 14(1):180. DOI:10.1186/1471-2105-14-180 · 2.67 Impact Factor
Show more