Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera.

Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California 92697, USA.
Biophysical Journal (Impact Factor: 3.83). 10/2008; 95(11):5385-98. DOI: 10.1529/biophysj.108.130310
Source: PubMed

ABSTRACT We demonstrate the calculation of particle brightness and concentration from fluorescence-fluctuation photon-counting statistics using an electron-multiplied charge-coupled device (EMCCD) camera. This technique provides a concentration-independent measure of particle brightness in dynamic systems. The high sensitivity and highly parallel detection of EMCCD cameras allow for imaging of dynamic particle brightness, providing the capability to follow aggregation reactions in real time. A critical factor of the EMCCD camera is the presence of nonlinearity at high intensities. These nonlinearities arise due to limited capacity of the CCD well and to the analog-to-digital converter maximum range. However, we show that the specific camera we used (with a 16-bit analog-to-digital converter) has sufficient dynamic range for most microscopy applications. In addition, we explore the importance of camera timing behavior as it is affected by the vertical frame transfer speed of the camera. Although the camera has microsecond exposure time for illumination of a few pixels, the exposure time increased to milliseconds for full-field illumination. Finally, we demonstrate the ability of the technique to follow concentration changes and measure single-molecule brightness in real time in living cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified.
    Scientific Reports 11/2014; 4:7048. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, flow velocities and concentrations in an imaging mode. Here we extend this technique to two-color fluorescence cross-correlation spectroscopy (SPIM-FCCS), which allows to measure molecular interactions in an imaging mode. We present a theoretical framework for SPIM-FCCS fitting models, which is subsequently used to evaluate several test measurements of in-vitro (labeled microspheres, several DNAs and small unilamellar vesicles) and in-vivo samples (dimeric and monomeric dual-color fluorescent proteins, as well as membrane bound proteins). Our method yields the same quantitative results as the well-established confocal FCCS, but in addition provides unmatched statistics and true imaging capabilities.
    Optics Express 02/2014; 22(3):2358-75. · 3.53 Impact Factor
  • Biophysical Journal 07/2014; 107(1):1-2. · 3.83 Impact Factor

Full-text (2 Sources)

Available from
Oct 1, 2014