Article

Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device.

Inovio Pharmaceuticals, Blue Bell, PA 19422, USA.
Human Gene Therapy Methods (Impact Factor: 1.64). 06/2012; 23(3):157-68. DOI: 10.1089/hgtb.2011.209
Source: PubMed

ABSTRACT In vivo electroporation (EP) is an efficient nonviral method for enhancing DNA vaccine delivery and immunogenicity in animals and humans. Intradermal delivery of DNA vaccines is an attractive strategy because of the immunocompetence of skin tissue. We have previously reported a minimally invasive surface intradermal EP (SEP) device for delivery of prophylactic DNA vaccines. Robust antibody responses were induced after vaccine delivery via surface EP in several tested animal models. Here we further investigated the optimal EP parameters for efficient delivery of DNA vaccines, with a specific emphasis on eliciting cellular immunity in addition to robust humoral responses. In a mouse model, using applied voltages of 10-100 V, transgene expression of green fluorescent protein and luciferase reporter genes increased significantly when voltages as low as 10 V were used as compared with DNA injection only. Tissue damage to skin was undetectable when voltages of 20 V and less were applied. However, inflammation and bruising became apparent at voltages above 40 V. Delivery of DNA vaccines encoding influenza virus H5 hemagglutinin (H5HA) and nucleoprotein (NP) of influenza H1N1 at applied voltages of 10-100 V elicited robust and sustained antibody responses. In addition, low-voltage (less than 20 V) EP elicited higher and more sustained cellular immune responses when compared with the higher voltage (above 20 V) EP groups after two immunizations. The data confirm that low-voltage EP, using the SEP device, is capable of efficient delivery of DNA vaccines into the skin, and establishes that these parameters are sufficient to elicit both robust and sustainable humoral as well as cellular immune responses without tissue damage. The SEP device, functioning within these parameters, may have important clinical applications for delivery of prophylactic DNA vaccines against diseases such as HIV infection, malaria, and tuberculosis that require both cellular and humoral immune responses for protection.

0 Bookmarks
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of increased temperature for gene electrotransfer has largely been considered negative. Many reports have published on the lack of heat from electrotransfer conditions to demonstrate that their effects are from the electrical pulses and not from a rise in temperature. Our hypothesis was to use low levels of maintained heat to aid in gene electrotransfer. The goal was to increase gene expression and/or reduce electric field. In our study we evaluated high and low electric field conditions from 90 V to 45 V which had been preheated to 40 °C, 43 °C, or 45 °C. Control groups of non-heated as well as DNA only were included for comparison in all experiments. Luciferase gene expression, viability, and percent cell distribution were measured. Our results indicated a 2–4 fold increase in gene expression that is temperature and field dependent. In addition levels of gene expression can be increased without significant decreases in cell death and in the case of high electric fields no additional cell death. Finally, in all conditions percent cell distribution was increased from the application of heat. From these results, we conclude that various methods may be employed depending on the end users desired goals. Electric field can be reduced 20-30% while maintaining or slightly increasing gene expression and increasing viability or overall gene expression and percent cell distribution can be increased with low viability.
    Bioelectrochemistry 08/2014; · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundA desirable HIV vaccine should induce protective long-lasting humoral and cellular immune responses.Methods Macaques were immunized by env DNA, selected from a panel of recently transmitted SIVmac251 Env using intradermal electroporation as vaccine delivery method and magnitude, breadth and longevity of humoral and cellular immune responses.ResultsThe macaques developed high, long-lasting humoral immune responses with neutralizing capacity against homologous and heterologous Env. The avidity of the antibody responses was also preserved over 1-year follow-up. Analysis of cellular immune responses demonstrated induction of Env-specific memory T cells harboring granzyme B, albeit their overall levels were low. Similar to the humoral responses, the cellular immunity was persistent over the ~1-year follow-up.Conclusion These data show that vaccination by this intradermal DNA delivery regimen is able to induce potent and durable immune responses in macaques.
    Journal of Medical Primatology 05/2014; · 0.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, DNA vaccines have undergone a number of technological advancements that have incited renewed interest and heightened promise in the field. Two such improvements are the use of genetically engineered cytokine adjuvants and plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery alone. Both strategies, either separately or in combination, have been shown to augment cellular and humoral immune responses in not only mice, but also in large animal models. These promising results, coupled with recent clinical trials that have shown enhanced immune responses in humans, highlight the bright prospects for DNA vaccines to address many human diseases.
    Frontiers in Immunology 01/2013; 4:354.