The Role of Autophagy in Mammalian Development: Cell Makeover Rather than Cell Death

Dulbecco Telethon Institute at the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
Developmental Cell (Impact Factor: 10.37). 10/2008; 15(3):344-57. DOI: 10.1016/j.devcel.2008.08.012
Source: PubMed

ABSTRACT Autophagy is important for the degradation of bulk cytoplasm, long-lived proteins, and entire organelles. In lower eukaryotes, autophagy functions as a cell death mechanism or as a stress response during development. However, autophagy's significance in vertebrate development, and the role (if any) of vertebrate-specific factors in its regulation, remains unexplained. Through careful analysis of the current autophagy gene mutant mouse models, we propose that in mammals, autophagy may be involved in specific cytosolic rearrangements needed for proliferation, death, and differentiation during embryogenesis and postnatal development. Thus, autophagy is a process of cytosolic "renovation," crucial in cell fate decisions.

Download full-text


Available from: Francesco Cecconi, Dec 24, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34+ progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.
    Leukemia Research 09/2014; 38(9). DOI:10.1016/j.leukres.2014.06.010 · 2.69 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an intracellular bulk degradation process involved in cell survival upon stress induction, but also with a newly identified function in myeloid differentiation. The autophagy-related (ATG)8 protein family, including the GABARAP and LC3 subfamilies, is crucial for autophagosome biogenesis. In order to evaluate the significance of the GABARAPs in the pathogenesis of acute myeloid leukemia, we compared their expression in primary AML patient samples, CD34(+) progenitor cells and in granulocytes from healthy donors. GABARAPL1 and GABARAPL2/GATE-16, but not GABARAP, were significantly downregulated in particular AML subtypes compared to normal granulocytes. Moreover, the expression of GABARAPL1 and GATE-16 was significantly induced during ATRA-induced neutrophil differentiation of acute promyelocytic leukemia cells. Lastly, knocking down GABARAPL2/GATE-16 in APL cells attenuated neutrophil differentiation and decreased autophagic flux. In conclusion, low GABARAPL2/GATE-16 expression is associated with an immature myeloid leukemic phenotype and these proteins are necessary for neutrophil differentiation of APL cells.
    Biochemical and Biophysical Research Communications 07/2013; 438(2). DOI:10.1016/j.bbrc.2013.07.056 · 2.28 Impact Factor