Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells

Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Virology (Impact Factor: 3.28). 10/2008; 381(1):143-54. DOI: 10.1016/j.virol.2008.08.028
Source: PubMed

ABSTRACT Dendritic cells (DCs) are among the first immune cells to encounter HIV-1 at the initial infection. DCs efficiently transfer HIV-1 to CD4+ T cells via infectious or virological synapses formed between DCs and T cells. Retroviruses exploit the cytoskeletal network to facilitate viral infection and dissemination; however, the role of the cytoskeleton in DC-mediated HIV-1 transmission is unknown. Here, we report that intact cytoskeleton is essential for DC-mediated HIV-1 transmission to CD4+ T cells. We found that macropinocytosis of HIV-1 contributes to DC-mediated HIV-1 endocytosis and transmission. Blocking HIV-1 macropinocytosis and disrupting actin or microtubules in DCs with specific inhibitors significantly prevented DC-mediated HIV-1 trans-infection of CD4+ T cells. Altered HIV-1 trafficking and impaired formation of virological synapses primarily accounted for the inhibition of viral transmission by cytoskeletal inhibitors. Our results provide new insights into the mechanisms underlying DC-mediated HIV-1 transmission to CD4+ T cells via the cytoskeletal network.

Download full-text


Available from: Clive Wells, Jul 10, 2014
  • Source
    • "Disruption of both macropinocytosis and cytoskeleton, using specific inhibitors, alters HIV-1 trafficking and inhibits DC-mediated HIV-1 transmission to CD4 + T cells (Wang et al. 2008). DC-mediated HIV-1 transmission to CD4 + T cells is inhibited because of impaired formation of the VS (Wang et al. 2008), indicating that HIV-1 exploits macropinocytosis and the cytoskeletal network to promote formation of the VS, allowing efficient HIV-1 transmission and dissemination. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4(+) T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4(+) T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4(+) T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4(+) T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.
    Advances in Experimental Medicine and Biology 01/2013; 762:109-30. DOI:10.1007/978-1-4614-4433-6_4 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis.
    Retrovirology 02/2009; 6:51. DOI:10.1186/1742-4690-6-51 · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) play a critical role in cell-to-cell-mediated transmission of human immunodeficiency virus type 1 (HIV-1). Interactions between intercellular adhesion molecules (ICAMs) and their ligands facilitate DC-T-cell contact. The interaction between ICAM-1 on DCs and leukocyte function-associated molecule 1 (LFA-1) on CD4(+) T cells has been proposed to be important for DC-mediated HIV-1 transmission. Given that DCs and T cells express multiple ICAMs and binding ligands, the relative importance of ICAMs in DC-mediated HIV-1 transmission remains to be defined. Here, we examine the role of ICAM-1, -2, and -3 in DC-mediated HIV-1 transmission to various types of target cells including primary CD4(+) T cells. The expression levels of ICAMs and their ligands on immature and mature DCs and various types of HIV-1 target cells were measured by flow cytometry. Blocking ICAM-1 in DCs with specific monoclonal antibodies and small interfering RNA impaired DC-mediated HIV-1 transmission. DC-mediated viral transmission was significantly inhibited when both ICAM-1 on DCs and LFA-1 on CD4(+) T cells were blocked. However, blockade of ICAM-1 on target cells did not significantly inhibit DC-mediated HIV-1 transmission. Ectopic expression and antibody blocking suggest that DC-mediated HIV-1 transmission to primary CD4(+) T cells is independent of ICAM-2 and ICAM-3. Taken together, our data clarified the role of ICAMs in DC-mediated HIV-1 transmission to CD4(+) T cells.
    Journal of Virology 03/2009; 83(9):4195-204. DOI:10.1128/JVI.00006-09 · 4.65 Impact Factor
Show more