Dystrophin and utrophin "double knockout" dystrophic mice exhibit a spectrum of degenerative musculoskeletal abnormalities

Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
Journal of Orthopaedic Research (Impact Factor: 2.99). 03/2013; 31(3). DOI: 10.1002/jor.22236
Source: PubMed


Duchenne muscular dystrophy (DMD) is a degenerative muscle disorder characterized by the lack of dystrophin expression at the sarcolemma of muscle fibers. In addition, DMD patients acquire osteopenia, fragility fractures, and scoliosis indicating that a deficiency in skeletal homeostasis coexists but little is known about the effects of DMD on bone and other connective tissues within the musculoskeletal system. Recent evidence has emerged implicating adult stem cell dysfunction in DMD myopathogenesis. Given the common mesenchymal origin of muscle and bone, we sought to investigate bone and other musculoskeletal tissues in a DMD mouse model. Here, we report that dystrophin-utrophin double knockout (dko) mice exhibit a spectrum of degenerative changes, outside skeletal muscle, in bone, articular cartilage, and intervertebral discs, in addition to reduced lifespan, muscle degeneration, spinal deformity, and cardiomyopathy previously reported. We also report these mice to have a reduced capacity for bone healing and exhibit spontaneous heterotopic ossification in the hind limb muscles. Therefore, we propose the dko mouse as a model for premature musculoskeletal aging and posit that a similar phenomenon may occur in patients with DMD. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

6 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterotopic ossification (HO) and fatty infiltration (FI) often occur in diseased skeletal muscle and have been previously described in various animal models of Duchenne muscular dystrophy (DMD); however, the pathological mechanisms remain largely unknown. Dystrophin-deficient mdx mice and dystrophin/utrophin double-knockout (dKO) mice are mouse models of DMD; however, mdx mice display a strong muscle regeneration capacity, while dKO mice exhibit a much more severe phenotype, which is similar to patients with DMD. Our results revealed that more extensive HO, but not FI, occurred in the skeletal muscle of dKO mice versus mdx mice, and RhoA activation specifically occurred at the sites of HO. Moreover, the gene expression of RhoA, BMPs, and several inflammatory factors were significantly up-regulated in muscle stem cells isolated from dKO mice; while inactivation of RhoA in the cells with RhoA/ROCK inhibitor Y-27632 led to reduced osteogenic potential and improved myogenic potential. Finally, inactivation of RhoA signaling in the dKO mice with Y-27632 improved muscle regeneration and reduced the expression of BMPs, inflammation, HO, and intramyocellular lipid accumulation in both skeletal and cardiac muscle. Our results revealed that RhoA represents a major molecular switch in the regulation of HO and muscle regeneration in dystrophic skeletal muscle of mice.-Mu, X., Usas, A., Tang, Y., Lu, A., Wang, B., Weiss, K., Huard, J. RhoA mediates defective stem cell function and heterotopic ossification in dystrophic muscle of mice.
    The FASEB Journal 05/2013; DOI:10.1096/fj.13-233460 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis, a disease characterized by cartilage degradation, abnormal subchondral bone remodelling and some grade of inflammation, and sarcopenia, a condition of pathological muscle weakness associated with altered muscle mass, strength, and function, are prevalent disorders in elderly people. There is increasing evidence that decline in lower limb muscle strength is associated with knee or hip osteoarthritis in a context of pain, altered joint stability, maladapted postures and defective neuromuscular communication. At the cellular and molecular level, chondrocytes and myoblasts share common pathological targets and pathways, and the close anatomical location of both cell types suggest a possibility of paracrine communication. In this review, we examine the relationship between osteoarthritis and sarcopenia in the musculoskeletal field, and discuss the potential advantage of concomitant therapies, or how each disorder may benefit from treatment of the other.
    Drug discovery today 08/2013; 19(3). DOI:10.1016/j.drudis.2013.08.004 · 6.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytoskeleton (microtubules, actin and intermediate filaments) has a cell type-specific spatial organization that is essential and reflects cell health. We are interested in understanding how changes in the organization of microtubules contribute to muscle diseases such as Duchenne muscular dystrophy (DMD). The grid-like immunofluorescence microtubule pattern of fast-twitch muscle fibers lends itself well to visual assessment. The more complicated pattern of other fibers does not. Furthermore, visual assessment is not quantitative. Therefore we have developed a robust software program for detecting and quantitating microtubule directionality. Such a tool was necessary because existing methods focus mainly on local image features and are not well suited for microtubules. Our tool, TeDT, is based on the Haralick texture method and takes into account both local and global features with more weight on the latter. The results are expressed in a graphic form responsive to subtle variations in microtubule distribution, while a numerical score allows quantitation of directionality. Furthermore, the results are not affected by imaging conditions or post-imaging procedures. TeDT successfully assesses test images and microtubules in fast-twitch fibers of wild-type and mdx mice (a model for DMD); TeDT also identifies and quantitates microtubule directionality in slow-twitch fibers, in the fibers of young animals, and in other mouse models which could not be assessed visually. TeDT might also contribute to directionality assessments of other cytoskeletal components. © 2014 Wiley Periodicals, Inc.
    Cytoskeleton 04/2014; 71(4). DOI:10.1002/cm.21166 · 3.12 Impact Factor
Show more