Article

Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy.

Biophysics Group, Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany.
Biophysical Journal (Impact Factor: 3.67). 10/2008; 95(11):5476-86. DOI: 10.1529/biophysj.108.135152
Source: PubMed

ABSTRACT The development and differentiation of complex organisms from the single fertilized egg is regulated by a variety of processes that all rely on the distribution and interaction of proteins. Despite the tight regulation of these processes with respect to temporal and spatial protein localization, exact quantification of the underlying parameters, such as concentrations and distribution coefficients, has so far been problematic. Recent experiments suggest that fluorescence correlation spectroscopy on a single molecule level in living cells has great promise in revealing these parameters with high precision. The optically challenging situation in multicellular systems such as embryos can be ameliorated by two-photon excitation, where scattering background and cumulative photobleaching is limited. A more severe problem is posed by the large range of molecular mobilities observed at the same time, as standard FCS relies strongly on the presence of mobility-induced fluctuations. In this study, we overcame the limitations of standard FCS. We analyzed in vivo polarity protein PAR-2 from eggs of Caenorhabditis elegans by beam-scanning FCS in the cytosol and on the cortex of C. elegans before asymmetric cell division. The surprising result is that the distribution of PAR-2 is largely uncoupled from the movement of cytoskeletal components of the cortex. These results call for a more systematic future investigation of the different cortical elements, and show that the FCS technique can contribute to answering these questions, by providing a complementary approach that can reveal insights not obtainable by other techniques.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Originally developed for the field of physical chemistry, fluorescence fluctuation spectroscopy (FFS) has evolved to a family of methods to quantify concentrations, diffusion rates and interactions of fluorescently labelled molecules. The possibility to measure at the nanomolar concentration level and to combine these techniques with microscopy allow to study biological processes with high sensitivity in the living cell. In this review, the basic principles, challenges and recent developments of the most common FFS methods are being discussed and illustrated by intracellular applications.
    Protoplasma 01/2014; · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels. Expected final online publication date for the Annual Review of Physical Chemistry Volume 65 is March 31, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Physical Chemistry 12/2013; · 13.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca(2+) channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals.
    Nature Communications 01/2014; 5:4974. · 10.74 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
May 16, 2014