Article

Dynamics of human myocardial progenitor cell Populations in the neonatal period

Stanford University, Palo Alto, California, United States
The Annals of thoracic surgery (Impact Factor: 3.65). 11/2008; 86(4):1311-9. DOI: 10.1016/j.athoracsur.2008.06.058
Source: PubMed

ABSTRACT Pluripotent cardiac progenitor cells resident in myocardium offer a potentially promising role in promoting recovery from injury. In pediatric congenital heart disease (CHD) patients, manipulation of resident progenitor cells may provide important new approaches to improving outcomes. Our study goals were to identify and quantitate populations of progenitor cells in human neonatal myocardium during the early postnatal period and determine the proliferative capacity of differentiated cardiac myocytes.
Immunologic markers of cell lineage (stage-specific embryonic antigen 4 [SSEA-4], islet cell antigen 1 [Isl1], c-kit, Nkx2.5, sarcoplasmic reticulum calcium-regulated ATPase type 2 [SERCA2]) and proliferation (Ki67) were localized in right ventricular biopsies from 32 CHD patients aged 2 to 93 days.
Neonatal myocardium contains progenitor cells and transitional cells expressing progenitor and differentiated myocyte marker proteins. Some cells expressed the pluripotent cell marker c-kit and also coexpressed the myocyte marker SERCA2. Multipotent progenitor cells, identified by the expression of Isl1, were found. Ki67 was expressed in some myocytes and in nonmyocyte cells. A few cells expressing SSEA-4 and Isl1 were observed during the early postnatal period. Cells expressing c-kit, the premyocyte marker Nkx2.5, and Ki67 were found throughout the first postnatal month. A progressive decline in cell density during the first postnatal month was observed for c-kit+ cells (p = 0.0013) and Nkx2.5+ cells (p = 0.0001). The percentage of cells expressing Ki67 declined during the first 3 postnatal months (p = 0.0030).
Cells in an incomplete state of cardiomyocyte differentiation continue to reside in the infant heart. However, the relative density of progenitor cells declines during the first postnatal month.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of anatomic pathology has changed significantly over the last decades and, as a result of the technological developments in molecular pathology and genetics, has had increasing pressures put on it to become quantitative and to provide more information about protein expression on a cellular level in tissue sections. Multispectral imaging (MSI) has a long history as an advanced imaging modality and has been used for over a decade now in pathology to improve quantitative accuracy, enable the analysis of multicolor immunohistochemistry, and drastically reduce the impact of contrast-robbing tissue autofluorescence common in formalin-fixed, paraffin-embedded tissues. When combined with advanced software for the automated segmentation of different tissue morphologies (eg, tumor vs stroma) and cellular and subcellular segmentation, MSI can enable the per-cell quantitation of many markers simultaneously. This article covers the role that MSI has played in anatomic pathology in the analysis of formalin-fixed, paraffin-embedded tissue sections, discusses the technological aspects of why MSI has been adopted, and provides a review of the literature of the application of MSI in anatomic pathology.
    Veterinary Pathology 10/2013; 51(1). DOI:10.1177/0300985813506918 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surgical advances over the past few decades have transformed the clinical management of congenital heart disease, such as hypoplastic left heart syndrome. Congenital heart disease affects more than 1% of liveborn infants and accounts for more than 2.5 million affected children per year worldwide. The cost and availability of complex medical management for these children becomes bluntly realized when heart failure progresses and only palliative options remain. Cell-based cardiac regeneration has been the focus of intensive efforts in adult heart disease for more than a decade and now has promise for pediatrics.
    Current Opinion in Pediatrics 08/2014; 26(5). DOI:10.1097/MOP.0000000000000138 · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.
    PLoS ONE 10/2013; 8(10):e77464. DOI:10.1371/journal.pone.0077464 · 3.53 Impact Factor