Article

Acetylation of non-histone proteins modulates cellular signalling at multiple levels.

Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
The International Journal of Biochemistry & Cell Biology (Impact Factor: 4.24). 10/2008; 41(1):185-98. DOI: 10.1016/j.biocel.2008.08.027
Source: PubMed

ABSTRACT This review focuses on the posttranslational acetylation of non-histone proteins, which determines vital regulatory processes. The recruitment of histone acetyltransferases and histone deacetylases to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation and differentiation. A steadily growing number of identified acetylated non-histone proteins demonstrate that reversible lysine acetylation affects mRNA stability, and the localisation, interaction, degradation and function of proteins. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumourigenesis, cancer cell proliferation and immune functions. Therefore inhibitors of histone deacetylases are considered as candidate drugs for cancer therapy. Histone deacetylase inhibitors alter histone acetylation and chromatin structure, which modulates gene expression, as well as promoting the acetylation of non-histone proteins. Here, we summarise the complex effects of dynamic alterations in the cellular acetylome on physiologically relevant pathways.

Download full-text

Full-text

Available from: Tobias Wagner, Jul 30, 2014
0 Followers
 · 
245 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Son múltiples los beneficios del ejercicio físico sobre la mente y el cuerpo, y ello es conocido que está en relación con la intensidad y duración del mismo (Cook y Koltyn., 2000). Los cambios notables a nivel mental, dejando de lado la hipótesis de las endorfinas y otros mecanismos implicados (Harbach y col., 2000; Kolata., 2002) carecen de una explicación científica y por tanto, se ha planteado otro mecanismo de acción que induzca estos efectos, siendo postulado el sistema cannabinoide como participante (Gaoni y Mechoulam., 1964; Devane y cols., 1988; Matsuda y col., 1990; Munro y col., 1993) por sus diferentes efectos sobre el cuerpo humano a través no solamente de la activación de receptores específicos (CB1 y CB2), sino también por el aumento de endocannabinoides circulantes. Diversos estudios indican niveles elevados de estos compuestos durante el ejercicio físico (Dietrich y McDaniel., 2004; Keeney y col., 2008; Fuss y Gass., 2010; Garland y col., 2011), lo que puede sugerir la implicación del sistema cannabinoide.
    Sociedad Española de Ciencias Fisiológicas (ISSN: 1889-397X), Spain; 12/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Converging evidence indicates that epigenetic mechanisms are involved in drug addiction, and that enzymes involved in chromatin remodeling may represent interesting targets in addiction treatment. No study has addressed whether histone deacetylase (HDAC) inhibitors (HDACi) can reduce excessive ethanol intake or prevent relapse in alcohol-dependent animals. Here, we assessed the effects of two HDACi, sodium butyrate (NaB) and MS-275, in the operant ethanol self-administration paradigm in dependent and non-dependent rats. To characterize some of the epigenetic mechanisms associated with alcohol dependence and NaB treatment, we measured the levels of histone H3 acetylation in different brain areas of dependent and non-dependent rats, submitted or not to NaB treatment. Our results demonstrated that (1) NaB and MS-275 strongly decreased excessive alcohol intake of dependent rats in the operant ethanol self-administration paradigm but not of non-dependent rats; (2) NaB reduced excessive drinking and prevented the escalation of ethanol intake in the intermittent access to 20% ethanol paradigm; and (3) NaB completely blocked the increase of ethanol consumption induced by an alcohol deprivation, thus demonstrating a preventive effect of NaB on relapse. The mapping of cerebral histone H3 acetylation revealed a hyperacetylation in the amygdala and cortical areas in dependent rats. Interestingly, NaB did not exacerbate the hyperacetylation observed in these regions, but instead restored it, specifically in cortical areas. Altogether, our results clearly demonstrated the efficacy of NaB in preventing excessive ethanol intake and relapse and support the hypothesis that HDACi may have a potential use in alcohol addiction treatment.
    Addiction Biology 08/2014; DOI:10.1111/adb.12161 · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.
    Biochemical and Biophysical Research Communications 04/2014; 447(1). DOI:10.1016/j.bbrc.2014.03.118 · 2.28 Impact Factor