Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant alpha-lipoic acid on insulin resistance in the obese Zucker rat.

Department of Physiology, Muscle Metabolism Laboratory, University of Arizona College of Medicine, Tucson, AZ 85721-0093, USA.
Metabolism: clinical and experimental (Impact Factor: 3.61). 11/2008; 57(10):1465-72. DOI: 10.1016/j.metabol.2008.05.018
Source: PubMed

ABSTRACT Oxidative stress and protein glycation can contribute to the development of insulin resistance and complications associated with type 2 diabetes mellitus. The antioxidant alpha-lipoic acid (ALA) reduces oxidative stress and the formation of advanced glycation end products (AGEs) and improves insulin sensitivity in skeletal muscle and liver. The AGE inhibitor pyridoxamine (PM) prevents irreversible protein glycation, thereby reducing various diabetic complications. The potential interactive effects of ALA and PM in the treatment of whole-body and skeletal muscle insulin resistance have not been investigated. Therefore, this study was designed to determine the effects of combined ALA and PM treatments on reducing muscle oxidative stress and ameliorating insulin resistance in prediabetic obese Zucker rats. Obese Zucker rats were assigned to either a control group or to a treatment group receiving daily injections of the R-(+)-enantiomer of ALA (R-ALA, 92 mg/kg) or PM (60 mg/kg), individually or in combination, for 6 weeks. The individual and combined treatments with R-ALA and PM were effective in significantly (P < .05) reducing plantaris muscle protein carbonyls (33%-40%) and urine-conjugated dienes (22%-38%), markers of oxidative stress. The R-ALA and PM in combination resulted in the largest reductions of fasting plasma glucose (23%), insulin (16%), and free fatty acids (24%) and of muscle triglycerides (45%) compared with alterations elicited by individual treatment with R-ALA or PM. Moreover, the combination of R-ALA and PM elicited the greatest enhancement of whole-body insulin sensitivity both in the fasted state and during an oral glucose tolerance test. Finally, combined R-ALA/PM treatments maintained the 44% enhancement of in vitro insulin-mediated glucose transport activity in soleus muscle of obese Zucker rats treated with R-ALA alone. Collectively, these results document a beneficial interaction of the antioxidant R-ALA and the AGE inhibitor PM in the treatment of whole-body and skeletal muscle insulin resistance in obese Zucker rats.

Download full-text


Available from: Markus Matuschek, Jun 08, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence suggests that prediabetes and metabolic syndrome are associated with increased risk for the development of microvascular complications including retinopathy, nephropathy, and, most commonly, peripheral painful neuropathy and/or autonomic neuropathy. The etiology of these disabling neuropathies is unclear, and several clinical and experimental studies implicated obesity, impaired fasting glycemia/impaired glucose tolerance, elevated triglyceride and non-esterified fatty acids, as well as oxidative-nitrative stress. Endoplasmic reticulum stress resulting from abnormal folding of newly synthesized proteins and leading to the impairment of metabolism, transcriptional regulation, and gene expression, is emerging as a key mechanism of metabolic diseases including obesity and diabetes. We evaluated the role for this phenomenon in prediabetic neuropathy using two animal models i.e., Zucker (fa/fa) rats and high-fat diet fed mice which displayed obesity and impaired glucose tolerance in the absence of overt hyperglycemia. Endoplasmic reticulum stress manifest in upregulation of the glucose-regulated proteins BiP/GRP78 and GRP94 of unfolded protein response was identified in the sciatic nerve of Zucker rats. A chemical chaperone, trimethylamine oxide, blunted endoplasmic reticulum stress and alleviated sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. A selective inhibitor of eukaryotic initiation factor-2α dephosphorylation, salubrinal, improved glucose intolerance and alleviated peripheral nerve dysfunction in high-fat diet fed mice. Our findings suggest an important role of endoplasmic reticulum stress in the neurobiology of prediabetic peripheral neuropathy, and identify a new therapeutic target.
    Experimental Neurology 11/2012; 247. DOI:10.1016/j.expneurol.2012.11.001 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral neuropathy develops in human subjects with prediabetes and metabolic syndrome before overt hyperglycemia. The contributions of impaired glucose tolerance and insulin signaling, hypertriglyceridemia and/or increased nonesterified fatty acids (NEFA), and hypercholesterolemia to this condition remain unknown. Niacin and its derivatives alleviate dyslipidemia with a minor effect on glucose homeostasis. This study evaluated the roles of impaired glucose tolerance versus dyslipidemia in prediabetic neuropathy using Zucker fatty (fa/fa) rats and the niacin derivative acipimox, as well as the interplay of hypertriglyceridemia, increased NEFA, and oxidative-nitrosative stress. Sixteen-week-old Zucker fatty rats with impaired glucose tolerance, obesity, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and increased NEFA displayed sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. Acipimox (100 mg kg(-1) day(-1), 4 weeks) reduced serum insulin, NEFA, and triglyceride concentrations without affecting glucose tolerance and hypercholesterolemia. It alleviated sensory nerve conduction velocity deficit and changes in behavioral measures of sensory function and corrected oxidative-nitrosative stress, but not impaired insulin signaling, in peripheral nerve. Elevated NEFA increased total and mitochondrial superoxide production and NAD(P)H oxidase activity in cultured human Schwann cells. In conclusion, hypertriglyceridemia and/or increased NEFA concentrations cause prediabetic neuropathy through oxidative-nitrosative stress. Lipid-lowering agents and antioxidants may find a use in the management of this condition.
    Free Radical Biology and Medicine 02/2012; 52(8):1255-63. DOI:10.1016/j.freeradbiomed.2012.01.029 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of metabolic dysfunctions like diabetes and insulin resistance in mammals is regulated by a myriad of factors. Oxidative stress seems to play a central role in this process as recent evidence shows a general increase in oxidative damage and a decrease in oxidative defense associated with several metabolic diseases. These changes in oxidative stress can be directly correlated with increased fat accumulation, obesity, and consumption of high-calorie/high-fat diets. Modulation of oxidant protection through either genetic mutation or treatment with antioxidants can significantly alter oxidative stress resistance and accumulation of oxidative damage in laboratory rodents. Antioxidant mutant mice have previously been utilized to examine the role of oxidative stress in other disease models, but have been relatively unexplored as models to study the regulation of glucose metabolism. In this review, we will discuss the evidence for oxidative stress as a primary mechanism linking obesity and metabolic disorders and whether alteration of antioxidant status in laboratory rodents can significantly alter the development of insulin resistance or diabetes.
    Free Radical Biology and Medicine 10/2011; 52(1):46-58. DOI:10.1016/j.freeradbiomed.2011.10.441 · 5.71 Impact Factor