Article

Shade Avoidance Influences Stress Tolerance in Maize

[ "Postdoctoral research associate, postdoctoral research associate, graduate student, Professor, and Professor, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada. Current address of first author: Agriculture and Agri-food Canada, Greenhouse and Crops Processing Centre, 2585 County Rd. 20, Harrow, ON N0R 1G0, Canada. Corresponding author's E-mail: "]; [ "Turface MVP®, Profile Products LLC Buffalo Grove, IL."]; [ "Dual channel R/FR sensor, SKR 110, 660/730 nm, Skye Instruments Ltd., Llandrindod Wells, Powys, UK."]; [ "LI-COR 3100 Area Meter, LI-COR Biosciences, Lincoln, NE."]; [ "SAS software, SAS Institute, Cary, NC."]
Weed Science (Impact Factor: 1.76). 07/2011; DOI: 10.1614/WS-D-10-00159.1

ABSTRACT Previous studies have suggested that the reduction in the root/shoot ratio that accompanies the shade avoidance response may reduce the tolerance of individuals to subsequent nutrient or moisture limitations. In this work, we examined the impact of the shade avoidance response on maize seedling growth and development and the response of these plants to a subsequent abiotic stress. Seedlings were grown in a field fertigation system under two light quality environments, ambient and a low red to far-red ratio, which were designed to simulate weed-free and weedy conditions, respectively. This system also enabled the controlled restriction of water and nutrients, which reduced the relative growth rate of the crop and created a secondary stress. Results of this study indicate that, while the shade avoidance response did reduce the root/shoot ratio in maize, this effect did not reduce plant tolerance to subsequent abiotic stress. Rather, the apparent additivity or synergism of shade avoidance and the secondary stressor on yield loss depended on whether the net effect of these two stressors was sufficiently large to shift the population toward the point where reproductive allometry was broken. Nomenclature: Maize, Zea mays L.

0 Bookmarks
 · 
221 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crop seedlings detect the presence of neighboring competitors by means of the red to far-red ratio (R/FR) of light reflected from the leaf surfaces of adjacent seedlings. Although previous studies have suggested that shifts in the R/FR initiate crop– weed competition, no studies have documented the R/FR of light reflected from weeds or explored how weed management practices may affect the R/FR. Experiments were conducted to test the following hypotheses: (1) the duration of R/FR signals reflected from the leaf surface of weed seedlings will vary among herbicides following treatment and will decline faster as the dose of a given herbicide increases, (2) the R/FR of reflected light will differ among weed species, and (3) the R/FR of reflected light will decrease as weed seedling leaf area and stage of development increases. Velvetleaf was used as a model weed species to examine herbicide chemistry and dose, and six weed species including Powell amaranth, velvetleaf, Eastern black nightshade, barnyardgrass, proso millet, and green foxtail were evaluated in order to characterize the R/FR of light reflected from their leaf surfaces. Results of this study confirm that the R/FR reflected from the leaf surface of weeds is affected by: herbicide chemistry, herbicide dose, weed species, stage of weed development, and distance of the weed from the crop. The relative decline in the R/FR (as a percent of the untreated control) was most rapid following treatment with paraquat, followed by glufosinate and then glyphosate. As glyphosate dose decreased, so did the reduction in the relative R/ FR. Based on reflected R/FR, weed species tended to be grouped into monocots and dicots, with the latter reflecting a lower R/FR per unit leaf area than the former. This disparity was attributed to the compact leaf arrangement and orientation of dicot weed canopies, which may contribute to the greater competitiveness of dicot weeds.
    Weed Science 07/2011; 59:424-430. · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Crop management decisions such as sowing density, row distance and orientation, choice of cultivar, and weed control define the architecture of the canopy, which in turn affects the light environment experienced by crop plants. Phytochromes, cryptochromes, phototropins, and the UV-B photoreceptor UVR8 are sensory photoreceptors able to perceive specific light signals that provide information about the dynamic status of canopy architecture. These signals include the low irradiance (indicating that not all the effects of irradiance occur via photosynthesis) and low red/far-red ratio typical of dense stands. The simulation of selected signals of canopy shade light and/or the analysis of photoreceptor mutants have revealed that canopy light signals exert significant influence on plant performance. The main effects of the photoreceptors include the control of (a) the number and position of the leaves and their consequent capacity to intercept light, via changes in stem height, leaf orientation, and branching; (b) the photosynthetic capacity of green tissues, via stomatic and nonstomatic actions; (c) the investment of captured resources into harvestable organs; and (d) the plant defences against herbivores and pathogens. Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops.
    ISRN Agronomy. 03/2013; 2013.

Full-text

Download
85 Downloads
Available from
May 17, 2014

Eric R Page