Article

Transplantation and magnetic resonance imaging of canine neural progenitor cell grafts in the postnatal dog brain.

W. F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, Department of Pathobiology, University of Pennsylvania; Stokes Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.35). 10/2008; 67(10):954-62. DOI: 10.1097/NEN.0b013e3181875b2f
Source: PubMed

ABSTRACT Cellular transplantation in the form of bone marrow has been one of the primary treatments of many lysosomal storage diseases (LSDs). Although bone marrow transplantation can help central nervous system manifestations in some cases, it has little impact in many LSD patients. Canine models of neurogenetic LSDs provide the opportunity for modeling central nervous system transplantation strategies in brains that more closely approximate the size and architectural complexity of the brains of children. Canine olfactory bulb-derived neural progenitor cells (NPCs) isolated from dog brains were expanded ex vivo and implanted into the caudate nucleus/thalamus or cortex of allogeneic dogs. Canine olfactory bulb-derived NPCs labeled with micron-sized superparamagnetic iron oxide particles were detected by magnetic resonance imaging both in vivo and postmortem. Grafts expressed markers of NPCs (i.e. nestin and glial fibrillary acidic protein), but not the neuronal markers Map2ab or beta-tubulin III. The NPCs were from dogs with the LSD mucopolysaccharidosis VII, which is caused by a deficiency of beta-glucuronidase. When mucopolysaccharidosis VII canine olfactory bulb-NPCs that were genetically corrected with a lentivirus vector ex vivo were transplanted into mucopolysaccharidosis VII recipient brains, they were detected histologically by beta-glucuronidase expression in areas identified by antemortem magnetic resonance imaging tracking. These results demonstrate the potential for ex vivo stem cell-based gene therapy and noninvasive tracking of therapeutic grafts in vivo.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin), but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease.
    PLoS ONE 01/2012; 7(5):e36016. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.
    Neurochemical Research 12/2012; · 2.13 Impact Factor

Full-text

Download
0 Downloads
Available from