Automatic symmetry-integrated brain injury detection in MRI sequences

2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 06/2009; DOI: 10.1109/CVPRW.2009.5204052

ABSTRACT This paper presents a fully automated symmetry-integrated brain injury detection method for magnetic resonance imaging (MRI) sequences. One of the limitations of current injury detection methods often involves a large amount of training data or a prior model that is only applicable to a limited domain of brain slices, with low computational efficiency and robustness. Our proposed approach can detect injuries from a wide variety of brain images since it makes use of symmetry as a dominant feature, and does not rely on any prior models and training phases. The approach consists of the following steps: (a) symmetry integrated segmentation of brain slices based on symmetry affinity matrix, (b) computation of kurtosis and skewness of symmetry affinity matrix to find potential asymmetric regions, (c) clustering of the pixels in symmetry affinity matrix using a 3D relaxation algorithm, (d) fusion of the results of (b) and (c) to obtain refined asymmetric regions, (e) Gaussian mixture model for unsupervised classification of potential asymmetric regions as the set of regions corresponding to brain injuries. Experimental results are carried out to demonstrate the efficacy of the approach.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a new modified fuzzy c-means (FCM) clustering algorithm that exploits bilateral symmetry information in image data. With the assumption of pixels that are located symmetrically tend to have similar intensity values; we compute the degree of symmetry for each pixel with respect to a global symmetry axis of the image. This information is integrated into the objective function of the standard FCM algorithm. Experimental results show the effectiveness of the approach. The method was further improved using neighbourhood information, and was compared with conventional fuzzy c-means algorithms.
    Fuzzy Systems (FUZZ), 2013 IEEE International Conference on; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care.
    06/2013; 33(1). DOI:10.1109/TMI.2013.2269317
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects.
    Medical Image Analysis 10/2014; 18(7). DOI:10.1016/ · 3.68 Impact Factor

Full-text (2 Sources)

Available from
Aug 22, 2014