Turning a blind eye to anti-VEGF toxicities

The Journal of clinical investigation (Impact Factor: 13.22). 10/2012; 122(11). DOI: 10.1172/JCI65509
Source: PubMed


Excessive blood vessel growth is a key feature of many retinal diseases, and recently, anti-VEGF therapy has been successfully applied to treat neovascular age-related macular degeneration (AMD), diabetic macular edema, and retinal vein occlusion. In this issue of the JCI, Kurihara et al. reveal an essential role of Vegfa in maintaining choroid vasculature and cone photoreceptors, critical for central and color vision. Their findings suggest that therapeutic approaches to blocking VEGF signaling in retinal diseases might have unexpected detrimental side effects and that the development of alternative strategies might be necessary.

1 Follower
7 Reads
  • Source
    • "Another finding was that repeated anti-VEGF treatment did not affect MPOD levels over a short period of three months. Anti-VEGF therapy can cause toxic photoreceptor damage [55], and macular pigment can be found in outer photoreceptor segments. The effect of anti-VEGF on MPOD however, is unknown and studies have only considered the effects of laser treatment on MPOD [29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence indicates that gene variants related to carotenoid metabolism play a role in the uptake of macular pigments lutein (L) and zeaxanthin (Z). Moreover, these pigments are proposed to reduce the risk for advanced age-related macular degeneration (AMD). This study provides the initial examination of the relationship between the gene variants related to carotenoid metabolism, macular pigment optical density (MPOD) and their combined expression in healthy humans and patients with AMD. Forty-four participants were enrolled from a general population and a private practice including 20 healthy participants and 24 patients with advanced (neovascular) AMD. Participants were genotyped for the three single nucleotide polymorphisms (SNPs) upstream from BCMO1, rs11645428, rs6420424 and rs6564851 that have been shown to either up or down regulate beta-carotene conversion efficiency in the plasma. MPOD was determined by heterochromatic flicker photometry. Healthy participants with the rs11645428 GG genotype, rs6420424 AA genotype and rs6564851 GG genotype all had on average significantly lower MPOD compared to those with the other genotypes (p<0.01 for all three comparisons). When combining BCMO1 genotypes reported to have "high" (rs11645428 AA/rs6420424 GG/rs6564851 TT) and "low" (rs11645428 GG/rs6420424 AA/rs6564851 GG) beta-carotene conversion efficiency, we demonstrate clear differences in MPOD values (p<0.01). In patients with AMD there were no significant differences in MPOD for any of the three BCMO1 gene variants. In healthy participants MPOD levels can be related to high and low beta-carotene conversion BCMO1 genotypes. Such relationships were not found in patients with advanced neovascular AMD, indicative of additional processes influencing carotenoid uptake, possibly related to other AMD susceptibility genes. Our findings indicate that specific BCMO1 SNPs should be determined when assessing the effects of carotenoid supplementation on macular pigment and that their expression may be influenced by retinal disease.
    PLoS ONE 02/2014; 9(2):e89069. DOI:10.1371/journal.pone.0089069 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long term monitoring of neuronal activity in awake behaving subjects can provide fundamental information about brain dynamics for both neuroscience and neuroengineering applications. Recent advances in VLSI systems has focused on designing wireless neural recording systems which can be mounted on animals and acquire neural signals in real time. These advances provide an unparalleled opportunity to study phenomenon such as neural plasticity in both a basic science setting (learning and memory), and also a clinical setting (injury and recovery). Here we present an integrated VLSI system for wireless telemetry of the entire spectrum of neural signals, spikes, local field potentials, electrocorticograms (ECoG) and electroencephalograms (EEG). The system integrates two custom designed VLSI chips, a 16 channel neural interface which can amplify, filter and digitize neural data up to 16 kS/sec and 12 bits and a low power ultra-wideband (UWB) chip which can transmit data at rates up to 14 Mbps. The entire system which includes these VLSI circuits, a digital interface board and a battery, is small, 1.2 × 1.2 × 2.6 in3, and light weight, 33 grams, so it can be chronically mounted on a rat. The system consumes 32.8 mA at 3.3V and can record for 6 hours running from the 200 mAh coin cell battery. Bench-top and in vitro characterization of the system showed comparable performance to the wired recording system.
    International Symposium on Circuits and Systems (ISCAS 2010), May 30 - June 2, 2010, Paris, France; 05/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monthly intraocular injections are widely used to deliver protein-based drugs that cannot cross the blood-retina barrier for the treatment of leading blinding diseases such as age-related macular degeneration (AMD). This invasive treatment carries significant risks, including bleeding, pain, infection, and retinal detachment. Further, current therapies are associated with a rate of retinal fibrosis and geographic atrophy significantly higher than that which occurs in the described natural history of AMD. A novel therapeutic strategy which improves outcomes in a less invasive manner, reduces risk, and provides long-term inhibition of angiogenesis and fibrosis is a felt medical need. Here we show that a single intravenous injection of targeted, biodegradable nanoparticles delivering a recombinant Flt23k intraceptor plasmid homes to neovascular lesions in the retina and regresses CNV in primate and murine AMD models. Moreover, this treatment suppressed subretinal fibrosis, which is currently not addressed by clinical therapies. Murine vision, as tested by OptoMotry©, significantly improved with nearly 40% restoration of visual loss induced by CNV. We found no evidence of ocular or systemic toxicity from nanoparticle treatment. These findings offer a nanoparticle-based platform for targeted, vitreous-sparing, extended-release, nonviral gene therapy.
    ACS Nano 03/2013; 7(4). DOI:10.1021/nn305958y · 12.88 Impact Factor
Show more


7 Reads
Available from