HELLP babies link a novel lincRNA to the trophoblast cell cycle.

The Journal of clinical investigation (Impact Factor: 15.39). 10/2012; DOI: 10.1172/JCI65171
Source: PubMed

ABSTRACT The HELLP syndrome is a pregnancy-associated disease inducing hemolysis, elevated liver enzymes, and low platelets in the mother. Although the HELLP symptoms occur in the third trimester in the mother, the origin of the disease can be found in the first trimester fetal placenta. A locus for the HELLP syndrome is present on chromosome 12q23 near PAH. Here, by multipoint nonparametric linkage, pedigree structure allele sharing, and haplotype association analysis of affected sisters and cousins, we demonstrate that the HELLP locus is in an intergenic region on 12q23.2 between PMCH and IGF1. We identified a novel long intergenic noncoding RNA (lincRNA) transcript of 205,012 bases with (peri)nuclear expression in the extravillous trophoblast using strand-specific RT-PCR complemented with RACE and FISH. siRNA-mediated knockdown followed by RNA-sequencing, revealed that the HELLP lincRNA activated a large set of genes that are involved in the cell cycle. Furthermore, blocking potential mutation sites identified in HELLP families decreased the invasion capacity of extravillous trophoblasts. This is the first large noncoding gene to be linked to a Mendelian disorder with autosomal-recessive inheritance.

  • [Show abstract] [Hide abstract]
    ABSTRACT: ncRNAs are emerging as key regulators of physiological and pathological processes and therefore have been identified as pharmacological targets and as markers for some diseases. Oligonucleotide analogues represent so far the most widely employed tool for the modulation of the expression of ncRNAs. In this perspective we briefly describe most of the known classes of ncRNAs and then we discuss the design and the applications of oligonucleotide analogues for their targeting. The effect of modifications of the chemical structure of the oligonucleotides on properties such as the binding affinity toward targets and off targets, stability to degradation and on their biological effect (when known) are discussed. Examples of molecules currently used in clinical trials are also reported.
    Journal of Medicinal Chemistry 10/2014; · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because cells are constantly exposed to micro-environmental changes, they require the ability to adapt to maintain a dynamic equilibrium. Proteins are considered critical for the regulation of gene expression, which is a fundamental process in determining the cellular responses to stimuli. Recently, revolutionary findings in RNA research and the advent of high-throughput genomic technologies have revealed a pervasive transcription of the human genome, which generates many long non-coding RNAs (lncRNAs) whose roles are largely undefined. However, there is evidence that lncRNAs are involved in several cellular physiological processes such as adaptation to stresses, cell differentiation, maintenance of pluripotency and apoptosis. The correct balance of lncRNA levels is crucial for the maintenance of cellular equilibrium, and the dysregulation of lncRNA expression is linked to many disorders; certain transcripts are useful prognostic markers for some of these pathologies. This review revisits the classic concept of cellular homeostasis from the perspective of lncRNAs specifically to understand how this novel class of molecules contributes to cellular balance and how its dysregulated expression can lead to the onset of pathologies such as cancer.
    Oncotarget 11/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The new landscape of human transcriptome along with the identification of numerous long non-coding RNAs (lncRNAs) has dramatically altered our approach to study diseases. It is now imperative to decipher the biological functions of these transcripts and how they impact on human cell and pathophysiology. Nonetheless, already at this very early stage of their study, the involvement of lncRNAs in cell transformation is emerging as a key aspect. Recently, researchers have started to explore the implications of lncRNAs alteration in hepatic pathophysiology. In this review, we will discuss in detail several examples of liver disease-relevant lncRNAs. Many lncRNAs have been shown to play a major role in hepatocellular carcinoma (HCC). For such type of tumor with an increasing incidence and a high mortality rate, it is crucial to identify new therapeutic targets and biomarkers to predict response to therapy. LncRNAs present as a promising new resource. One major challenge for the future would be to systematically address the lncRNAs expression among the different cellular components of the liver. To achieve this goal, a combination of clinically driven, genetically defined, morphologically classified, and molecular-based studies will have to be performed. In conclusion, lncRNAs will undoubtedly provide a rewarding field of study and most importantly a new resource to identify new disease associated biomarkers and molecular targets for therapy for liver diseases.
    Frontiers in medicine. 01/2014; 1:35.


Available from
Jun 3, 2014