Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling

Dept. of Cell Biology, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2H7.
AJP Cell Physiology (Impact Factor: 3.67). 10/2008; 295(5):C1354-65. DOI: 10.1152/ajpcell.00239.2008
Source: PubMed

ABSTRACT The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins - including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 - that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 05/2015; 50. DOI:10.1016/j.biomaterials.2015.01.050 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuole membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuole fusion, but its mode of action is unknown. Here we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here we report that eEF1A interacts with Rho1p via a C-terminal sub-domain. This interaction, occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuole fusion however, overexpression of the Rho1p interacting sub-domain affects vacuole morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuole membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles were it can readily organize F-actin. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 01/2015; 290(8). DOI:10.1074/jbc.M114.630764 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
    Frontiers in Immunology 09/2014; 5:448. DOI:10.3389/fimmu.2014.00448