Revealing the catalytic potential of an acyl-ACP desaturase: Tandem selective oxidation of saturated fatty acids

Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 10/2008; 105(38):14738-43. DOI: 10.1073/pnas.0805645105
Source: PubMed


It is estimated that plants contain thousands of fatty acid structures, many of which arise by the action of membrane-bound desaturases and desaturase-like enzymes. The details of "unusual" e.g., hydroxyl or conjugated, fatty acid formation remain elusive, because these enzymes await structural characterization. However, soluble plant acyl-ACP (acyl carrier protein) desaturases have been studied in far greater detail but typically only catalyze desaturation (dehydrogenation) reactions. We describe a mutant of the castor acyl-ACP desaturase (T117R/G188L/D280K) that converts stearoyl-ACP into the allylic alcohol trans-isomer (E)-10-18:1-9-OH via a cis isomer (Z)-9-18:1 intermediate. The use of regiospecifically deuterated substrates shows that the conversion of (Z)-9-18:1 substrate to (E)-10-18:1-9-OH product proceeds via hydrogen abstraction at C-11 and highly regioselective hydroxylation (>97%) at C-9. (18)O-labeling studies show that the hydroxyl oxygen in the reaction product is exclusively derived from molecular oxygen. The mutant enzyme converts (E)-9-18:1-ACP into two major products, (Z)-10-18:1-9-OH and the conjugated linolenic acid isomer, (E)-9-(Z)-11-18:2. The observed product profiles can be rationalized by differences in substrate binding as dictated by the curvature of substrate channel at the active site. That three amino acid substitutions, remote from the diiron active site, expand the range of reaction outcomes to mimic some of those associated with the membrane-bound desaturase family underscores the latent potential of O(2)-dependent nonheme diiron enzymes to mediate a diversity of functionalization chemistry. In summary, this study contributes detailed mechanistic insights into factors that govern the highly selective production of unusual fatty acids.

13 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Picky ferryl: The complex [Fe(Tp(Ph(2)))(BF)] (Tp(Ph(2)) = hydrotris(3,5-diphenylpyrazolyl)borate; BF = benzoylformate) reacts with O(2) to generate an oxidant (see picture; O red, pink; Fe yellow; N blue; C gray; H white) that oxidizes added hydrocarbons shape-selectively. Discrimination derives from a cleft formed by two phenyl groups of the Tp(Ph(2)) ligand, favoring oblate spheroidal substrates.
    Angewandte Chemie International Edition 02/2009; 48(10):1780-3. DOI:10.1002/anie.200805342 · 11.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Desaturases and related enzymes perform O(2)-dependent dehydrogenations initiated at unactivated C-H groups with the use of a diiron active site. Determination of the long-sought oxidized desaturase crystal structure facilitated structural comparison of the active sites of disparate diiron enzymes. Experiments on the castor desaturase are discussed that provide experimental support for a hypothesized ancestral oxidase enzyme in the context of the evolution of the diiron enzyme diverse functionality. We also summarize recent analysis of a castor mutant desaturase that provides valuable insights into the relationship of proposed substrate-binding modes with respect to a range of catalytic outcomes.
    Journal of Biological Chemistry 05/2009; 284(28):18559-63. DOI:10.1074/jbc.R900009200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Actin filament bundles are higher-order cytoskeletal structures that are crucial for the maintenance of cellular architecture and cell expansion. They are generated from individual actin filaments by the actions of bundling proteins like fimbrins, LIMs, and villins. However, the molecular mechanisms of dynamic bundle formation and turnover are largely unknown. Villins belong to the villin/gelsolin/fragmin superfamily and comprise at least five isovariants in Arabidopsis thaliana. Different combinations of villin isovariants are coexpressed in various tissues and cells. It is not clear whether these isovariants function together and act redundantly or whether they have unique activities. VILLIN1 (VLN1) is a simple filament-bundling protein and is Ca(2+) insensitive. Based on phylogenetic analyses and conservation of Ca(2+) binding sites, we predict that VLN3 is a Ca(2+)-regulated villin capable of severing actin filaments and contributing to bundle turnover. The bundling activity of both isovariants was observed directly with time-lapse imaging and total internal reflection fluorescence (TIRF) microscopy in vitro, and the mechanism mimics the "catch and zipper" action observed in vivo. Using time-lapse TIRF microscopy, we observed and quantified the severing of individual actin filaments by VLN3 at physiological calcium concentrations. Moreover, VLN3 can sever actin filament bundles in the presence of VLN1 when calcium is elevated to micromolar levels. Collectively, these results demonstrate that two villin isovariants have overlapping and distinct activities.
    The Plant Cell 08/2010; 22(8):2727-48. DOI:10.1105/tpc.110.076240 · 9.34 Impact Factor
Show more


13 Reads
Available from