Article

A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05).

Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143-0350, USA.
Journal of Neuro-Oncology (Impact Factor: 2.79). 10/2008; 91(2):175-82. DOI: 10.1007/s11060-008-9693-3
Source: PubMed

ABSTRACT This phase II study was designed to determine the overall survival time of adults with supratentorial glioblastoma treated with the immune modulator, polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose (poly-ICLC), in combination with and following radiation therapy (RT).
This was an open-label, single arm phase II study. Patients were treated with RT in combination with poly-ICLC followed by poly-ICLC as a single agent. Poly-ICLC was initiated 7-28 days after the surgical procedure that established the diagnosis; radiotherapy began within 7 days of the first dose of poly-ICLC and within 35 days of surgical diagnosis. Treatment with poly-ICLC continued following the completion of RT to a maximum of 1 year or until tumor progression.
31 patients were enrolled in this study. One patient did not have a Glioblastoma mutiforme and was deemed ineligible. For the 30 eligible patients, time to progression was known for 27 patients and 3 were censored. The estimated 6-month progression-free survival was 30% and the estimated 1-year progression-free survival was 5%. Median time to progression was as 18 weeks. The 1-year survival was 69% and the median survival was 65 weeks.
The combined therapy was relatively well-tolerated. This study suggests a survival advantage compared to historical studies using RT without chemotherapy but no survival advantage compared to RT with adjuvant nitrosourea or non-temozolomide chemotherapy. Our results suggest that poly-ICLC has activity against glioblastoma and may be worth further study in combination with agents such as temozolomide.

0 Bookmarks
 · 
163 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.
    Protein & Cell 11/2014; DOI:10.1007/s13238-014-0112-6 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Diffuse brainstem gliomas (BSGs) and other high-grade gliomas (HGGs) of childhood carry a dismal prognosis despite current treatments, and new therapies are needed. Having identified a series of glioma-associated antigens (GAAs) commonly overexpressed in pediatric gliomas, we initiated a pilot study of subcutaneous vaccinations with GAA epitope peptides in HLA-A2-positive children with newly diagnosed BSG and HGG. Patients and Methods GAAs were EphA2, interleukin-13 receptor alpha 2 (IL-13R alpha 2), and survivin, and their peptide epitopes were emulsified in Montanide-ISA-51 and given every 3 weeks with intramuscular polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose for eight courses, followed by booster vaccinations every 6 weeks. Primary end points were safety and T-cell responses against vaccine-targeted GAA epitopes. Treatment response was evaluated clinically and by magnetic resonance imaging. Results Twenty-six children were enrolled, 14 with newly diagnosed BSG treated with irradiation and 12 with newly diagnosed BSG or HGG treated with irradiation and concurrent chemotherapy. No dose-limiting non-CNS toxicity was encountered. Five children had symptomatic pseudoprogression, which responded to dexamethasone and was associated with prolonged survival. Only two patients had progressive disease during the first two vaccine courses; 19 had stable disease, two had partial responses, one had a minor response, and two had prolonged disease-free status after surgery. Enzyme-linked immunosorbent spot analysis in 21 children showed positive anti-GAA immune responses in 13: to IL-13R alpha 2 in 10, EphA2 in 11, and survivin in three. Conclusion GAA peptide vaccination in children with gliomas is generally well tolerated and has preliminary evidence of immunologic and clinical responses. Careful monitoring and management of pseudoprogression is essential. (C) 2014 by American Society of Clinical Oncology
    Journal of Clinical Oncology 06/2014; 32(19). DOI:10.1200/JCO.2013.54.0526 · 17.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) is the most common primary brain tumor, and despite aggressive therapy with surgery, radiation, and chemotherapy, average survival remains at about 1.5 years. The highly infiltrative and invasive nature of GBM requires that alternative treatments for this disease be widespread and targeted to tumor cells. Immunotherapy in the form of tumor vaccines has the potential to meet this need. Vaccines against GBM hold the promise of triggering specific and systemic antitumor immune responses that may be the key to eradicating this unrelenting cancer. In this review, we will discuss past and present clinical trials of various GBM vaccines and their potential impact on the future care of GBM patients. There have been many promising phase I and phase II GBM vaccine studies that have led to ongoing and upcoming phase III trials. If the results of these randomized trials show a survival benefit, immunotherapy will become a standard part of the treatment of this devastating disease.
    Journal of Immunology Research 04/2014; 2014:796856. DOI:10.1155/2014/796856 · 2.93 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
Jun 3, 2014