Article

Serum peptidome patterns of colorectal cancer based on magnetic bead separation and maldi-tof mass spectrometry analysis.

Institute of Anal-Colorectal Surgery, No. 150 Hospital of PLA, LuoYang 471000, China.
BioMed Research International (Impact Factor: 2.71). 01/2012; 2012:985020. DOI: 10.1155/2012/985020
Source: PubMed

ABSTRACT Background. Colorectal cancer (CRC) is one of the most common cancers in the world, identification of biomarkers for early detection of CRC represents a relevant target. The present study aims to determine serum peptidome patterns for CRC diagnosis. Methods. The present work focused on serum proteomic analysis of 32 health volunteers and 38 CRC by ClinProt Kit combined with mass spectrometry. This approach allowed the construction of a peptide patterns able to differentiate the studied populations. An independent group of serum (including 33 health volunteers, 34 CRC, 16 colorectal adenoma, 36 esophageal carcinoma, and 31 gastric carcinoma samples) was used to verify the diagnostic and differential diagnostic capability of the peptidome patterns blindly. An immunoassay method was used to determine serum CEA of CRC and controls. Results. A quick classifier algorithm was used to construct the peptidome patterns for identification of CRC from controls. Two of the identified peaks at m/z 741 and 7772 were used to construct peptidome patterns, achieving an accuracy close to 100% (>CEA, P < 0.05). Furthermore, the peptidome patterns could differentiate validation group with high accuracy. Conclusions. These results suggest that the ClinProt Kit combined with mass spectrometry yields significantly higher accuracy for the diagnosis and differential diagnosis of CRC.

0 Bookmarks
 · 
45 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers.
    World Journal of Gastroenterology 04/2014; 20(14):3804-3824. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) remains a major worldwide cause of cancer-related morbidity and mortality largely due to the insidious onset of the disease. The current clinical procedures utilized for disease diagnosis are invasive, unpleasant, and inconvenient. Hence, the need for simple blood tests that could be used for the early detection is crucial for its ultimate control and prevention. The present work is a case-control study focused on proteomic analysis of serum of healthy volunteers and CRC patients by the ClinProt profiling technology based on mass spectrometry. This approach allowed to identifying a pattern of proteins/peptides able to differentiate the studied populations. Moreover, some of peptides differentially expressed in the serum of patients as compared to healthy volunteers were identified by LTQ Orbitrap XL. A Quick Classifier Algorithm was used to construct the peptidome patterns (m/z 1208, 1467, 1505, 1618, 1656 and 4215) for the identification of CRC from healthy volunteers with accuracy close to 100% (>CEA, P < 0.05). Peaks at m/z 1505 and 1618 were identified as alpha-2-HS-glycoprotein precursor and tubulin beta chain, respectively. Alpha-2-HS-glycoprotein precursor and tubulin beta chain could be involved in the pathogenesis of CRC and perform as potential serology diagnosis biomarker.Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4796578761089186.
    Diagnostic Pathology 03/2014; 9(1):53. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to the World Health Organization, 800,000 cancer-related deaths are caused by gastric cancer each year globally, hence making it the second leading cause of cancer-related deaths in the world. Gastric cancer is often either asymptomatic or causing only nonspecific symptoms in its early stages. By the time the symptoms occur, the cancer has usually reached an advanced stage, which is one of the main reasons for its relatively poor prognosis. Therefore, early diagnosis and early treatment are very crucial. The differential analysis of serum protein between cancer patients and healthy controls can be performed using proteomics techniques and can hence be adopted as tumor biomarkers for the early diagnosis of cancer. So far, several serum tumor biomarkers have been identified for gastric cancer. However due to their poor specificity and sensitivity, they have proven to be insufficient for the reliable diagnosis of gastric cancer. Thus, using modern advanced proteomic techniques to find some new and reliable serum tumor biomarkers for earlier and reliable diagnosis of gastric cancer is a must. Nowadays, proteomics-based techniques, such as SELDI and HCLP, are available to discover biomarkers in gastric cancer. Numerous novel serum tumor biomarkers such as SAA, plasminogen and C9c, have been discovered through serological proteomics strategies. This review mainly focuses on the serum proteomics techniques and their application in the research of gastric cancer.
    Clinica chimica acta; international journal of clinical chemistry 02/2014; · 2.54 Impact Factor

Preview

Download
0 Downloads
Available from