Article

The Complex Interaction between Marine Debris and Toxic Chemicals in the Ocean

Environmental Science & Technology (Impact Factor: 5.48). 10/2012; 46(22). DOI: 10.1021/es3027105
Source: PubMed

ABSTRACT Marine debris, especially plastic debris, is widely recognized as global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

6 Followers
 · 
250 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine debris is commonly observed everywhere in the oceans. Litter enters the seas from both land-based sources, from ships and other installations at sea, from point and diffuse sources, and can travel long distances before being stranded. Plastics typically constitute the most important part of marine litter sometimes accounting for up to 100 % of floating litter. On beaches, most studies have demonstrated densities in the 1 item m−2 range except for very high concentrations because of local conditions, after typhoons or flooding events. Floating marine debris ranges from 0 to beyond 600 items km−2. On the sea bed, the abundance of plastic debris is very dependent on location, with densities ranging from 0 to >7700 items km−2, mainly in coastal areas. Recent studies have demonstrated that pollution of microplastics, particles <5 mm, has spread at the surface of oceans, in the water column and in sediments, even in the deep sea. Concentrations at the water surface ranged from thousands to hundred thousands of particles km−2. Fluxes vary widely with factors such as proximity of urban activities, shore and coastal uses, wind and ocean currents. These enable the presence of accumulation areas in oceanic convergence zones and on the seafloor, notably in coastal canyons. Temporal trends are not clear with evidences for increases, decreases or without changes, depending on locations and environmental conditions. In terms of distribution and quantities, proper global estimations based on standardized approaches are still needed before considering efficient management and reduction measures.
    Marine Anthropogenic Litter, 1 edited by Melanie Bergmann, Lars Gutow, Michael Klages, 06/2015: chapter Global Distribution, Composition and Abundance of Marine Litter: pages 56; Springer., ISBN: 978-3-319-16509-7 (Print) 978-3-319-16510-3 (Online)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of microplastics in various environmental samples requires the identification of microplastics from natural materials. The identification technique lacks a standardized protocol. Herein, stereomicroscope and Fourier transform infrared spectroscope (FT-IR) identification methods for microplastics (<1mm) were compared using the same samples from the sea surface microlayer (SML) and beach sand. Fragmented microplastics were significantly (p<0.05) underestimated and fiber was significantly overestimated using the stereomicroscope both in the SML and beach samples. The total abundance by FT-IR was higher than by microscope both in the SML and beach samples, but they were not significantly (p>0.05) different. Depending on the number of samples and the microplastic size range of interest, the appropriate identification method should be determined; selecting a suitable identification method for microplastics is crucial for evaluating microplastic pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Marine Pollution Bulletin 02/2015; 93(1-2). DOI:10.1016/j.marpolbul.2015.01.015 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microplastics represent a growing environmental concern for the oceans due to their potential of adsorbing chemical pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polyethylene (PE) and polystyrene (PS) microplastics were shown to adsorb pyrene with a time and dose-dependent relationship. Results also indicated a marked capability of contaminated microplastics to transfer this model PAH to exposed mussels Mytilus galloprovincialis; tissue localization of microplastics occurred in haemolymph, gills and especially digestive tissues where a marked accumulation of pyrene was also observed. Cellular effects included alterations of immunological responses, lysosomal compartment, peroxisomal proliferation, antioxidant system, neurotoxic effects, onset of genotoxicity; changes in gene expression profile was also demonstrated through a new DNA microarray platform. The study provided the evidence that microplastics adsorb PAHs, emphasizing an elevated bioavailability of these chemicals after the ingestion, and the toxicological implications due to responsiveness of several molecular and cellular pathways to microplastics. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Environmental Pollution 01/2015; 198C:211-222. DOI:10.1016/j.envpol.2014.12.021 · 3.90 Impact Factor