Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota.

Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
Cancer Research (Impact Factor: 9.28). 10/2008; 68(18):7403-8. DOI: 10.1158/0008-5472.CAN-08-1449
Source: PubMed

ABSTRACT K-Ras mutations are frequently found in various cancers and are associated with resistance to treatment or poor prognosis. Similarly, poor outcomes have recently been observed in cancer patients with overexpression of protein kinase C iota (PKCiota), an atypical protein kinase C that is activated by oncogenic Ras protein and is required for K-Ras-induced transformation and colonic carcinogenesis in vivo. Thus far, there is no effective agent for treatment of cancers with K-Ras mutations or PKCiota overexpression. By synthetic lethality screening, we identified a small compound (designated oncrasin-1) that effectively kills various human lung cancer cells with K-Ras mutations at low or submicromolar concentrations. The cytotoxic effects correlated with apoptosis induction, as was evidenced by increase of apoptotic cells and activation of caspase-3 and caspase-8 upon the treatment of oncrasin-1 in sensitive cells. Treatment with oncrasin-1 also led to abnormal aggregation of PKCiota in the nucleus of sensitive cells but not in resistant cells. Furthermore, oncrasin-1-induced apoptosis was blocked by siRNA of K-Ras or PKCiota, suggesting that oncrasin-1 is targeted to a novel K-Ras/PKCiota pathway. The in vivo administration of oncrasin-1 suppressed the growth of K-ras mutant human lung tumor xenografts by >70% and prolonged the survival of nude mice bearing these tumors, without causing detectable toxicity. Our results indicate that oncrasin-1 or its active analogues could be a novel class of anticancer agents, which effectively kill K-Ras mutant cancer cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Administration of monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) such as cetuximab and panitumumab in combination with conventional chemotherapy substantially prolongs survival of patients with metastatic colorectal cancer (mCRC). However, the efficacy of these mAbs is limited due to genetic variation among patients, in particular K-ras mutations. The discovery of K-ras mutation as a predictor of non-responsiveness to EGFR mAb therapy has caused a major change in the treatment of mCRC. Drugs that inhibit transformation caused by oncogenic alterations of Ras and its downstream components such as BRAF, MEK and AKT seem to be promising cancer therapeutics as single agents or when given with EGFR inhibitors. Although multiple therapeutic strategies to overcome EGFR mAb-resistance are under investigation, our understanding of their mode of action is limited. Rational drug development based on stringent preclinical data, biomarker validation, and proper selection of patients is of paramount importance in the treatment of mCRC. In this review, we will discuss diverse approaches to overcome the problem of resistance to existing anti-EGFR therapies and potential future directions for cancer therapies related to the mutational status of genes associated with EGFR-Ras-ERK and PI3K signalings.
    World journal of gastroenterology : WJG. 08/2014; 20(29):9862-9871.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In traditional systems of medicine including homeopathy, the Condurango extract (Con) is often used to cure stomach cancer mainly, without having any scientific validation of its anti-cancer ability. Con has therefore been tested against non-small-cell lung cancer cells (NSCLC) A549 and NCI-H522 (H522) known to contain the KRAS mutation, making them resistant to most chemotherapeutic agents. As cancer cells generally defy cytotoxicity developed by chemopreventive agents and escape cell death, any drug showing the capability of preferentially killing cancer cells through apoptosis is worth consideration for judicious application. A549 and H522 cells were exposed to and of Con, respectively, for 48 h and analysed based on various protocols associated with apoptosis and DNA damage, such as MTT assay to determine cell viability, LDH assay, DNA fragmentation assay, comet assay, and microscopical examinations of DNA binding fluorescence stains like DAPI, Hoechst 33258 and acridine orange/ethidium bromide to determine the extent of DNA damage made in drug-treated and untreated cells and the results compared. Changes in mitochondrial membrane potential and the generation of reactive oxygen species were also documented through standard techniques. Con killed almost 50% of the cancer cells but spared normal cells significantly. Fluorescence studies revealed increased DNA nick formation and depolarized membrane potentials after drug treatment in both cell types. Caspase-3 expression levels confirmed the apoptosis-inducing potential of Con in both the NSCLC lines. Thus, overall results suggest considerable anticancer potential of Con against NSCLC in vitro, validating its use against lung cancer by practitioners of traditional medicine including homeopathy.
    TANG. 02/2013; 3(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Through synthetic lethality screening of isogenic cell lines with and without the oncogenic KRAS gene and through lead compound optimization, we recently developed a novel anticancer agent designated NSC-743380 (oncrasin-72) that has promising in vitro and in vivo anticancer activity in a subset of cancer cell lines, including KRAS-mutant cancer cells. However, NSC-743380 tends to form dimers, which dramatically reduces its anticancer activity. To improve the physicochemical properties of NSC-743380, we synthesized a prodrug of NSC-743380, designated oncrasin-266, by modifying NSC-743380 with cyclohexylacetic acid and evaluated its in vitro and in vivo properties. Oncrasin-266 spontaneously hydrolyzed in phosphate-buffered saline in a time-dependent manner and was more stable than NSC-743380 in powder or stock solutions. In vivo administration of oncrasin-266 in mice led to the release of NSC-743380 which improved the pharmacokinetics of NSC-743380. Tissue distribution analysis revealed that oncrasin-266 was deposited in liver, whereas released NSC-743380 was detected in liver, lung, kidney, and subcutaneous tumor. Oncrasin-266 was better tolerated in mice at a higher dose level treatment (150-300mg/kg, ip) than the parent agent was, suggesting that the prodrug reduced the acute toxicity of the parent agent. Our results demonstrated that the prodrug strategy could improve the stability, pharmacokinetic properties, and safety of NSC-743380.
    Bioorganic & Medicinal Chemistry 10/2014; · 2.95 Impact Factor


Available from