Article

Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer.

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
Oncogene (Impact Factor: 8.56). 10/2008; 27(57):7180-91. DOI: 10.1038/onc.2008.327
Source: PubMed

ABSTRACT Cancer cells differentiate along specific lineages that largely determine their clinical and biologic behavior. Distinct cancer phenotypes from different cells and organs likely result from unique gene expression repertoires established in the embryo and maintained after malignant transformation. We used comprehensive gene expression analysis to examine this concept in the prostate, an organ with a tractable developmental program and a high propensity for cancer. We focused on gene expression in the murine prostate rudiment at three time points during the first 48 h of exposure to androgen, which initiates proliferation and invasion of prostate epithelial buds into surrounding urogenital sinus mesenchyme. Here, we show that androgen exposure regulates genes previously implicated in prostate carcinogenesis comprising pathways for the phosphatase and tensin homolog (PTEN), fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), and Wnt signaling along with cellular programs regulating such 'hallmarks' of cancer as angiogenesis, apoptosis, migration and proliferation. We found statistically significant evidence for novel androgen-induced gene regulation events that establish and/or maintain prostate cell fate. These include modulation of gene expression through microRNAs, expression of specific transcription factors, and regulation of their predicted targets. By querying public gene expression databases from other tissues, we found that rather than generally characterizing androgen exposure or epithelial budding, the early prostate development program more closely resembles the program for human prostate cancer. Most importantly, early androgen-regulated genes and functional themes associated with prostate development were highly enriched in contrasts between increasingly lethal forms of prostate cancer, confirming a 'reactivation' of embryonic pathways for proliferation and invasion in prostate cancer progression. Among the genes with the most significant links to the development and cancer, we highlight coordinate induction of the transcription factor Sox9 and suppression of the proapoptotic phospholipid-binding protein Annexin A1 that link early prostate development to early prostate carcinogenesis. These results credential early prostate development as a reliable and valid model system for the investigation of genes and pathways that drive prostate cancer.

0 Followers
 · 
158 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS. © 2014 S. Karger AG, Basel.
    Sexual Development 12/2014; 8(6):339-349. DOI:10.1159/000369266 · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET), are essential morphological processes during development and in the regulation of stem cell pluripotency, yet these processes are also activated in pathological contexts, such as in fibrosis and cancer progression. Multi-component signaling pathways cooperate in initiation of EMT and MET programs, via transcriptional, post-transcriptional, translational, and post-translational regulation. EMT is required for tissue regeneration and normal embryonic development as it enables epithelial cells to acquire the mesenchymal phenotype, conferring them migratory and dynamic properties towards forming three-dimensional structures during gastrulation and organ formation. Uncontrolled activation of such phenomenon and the pathways signaling EMT events in adult life, leads to cancer growth and orchestrated by signaling interactions from the microenvironment, epithelial tumor cells with enhanced polarity, become invasive and rapidly metastasize to distant sites. Loss of epithelial markers (E-cadherin) and gain of mesenchymal markers (N-cadherin), at the leading edge of solid tumors is associated with progression to metastasis. This review will explore the contribution of EMT to embryonic development of GU organs and the functional consequences of EMT-MET cycles in prostate tumorigenesis. Recent insights identifying key players driving EMT and its reversal to MET during prostate cancer progression to metastatic castration-resistant disease will be discussed, with specific focus on androgen receptor (AR) and transforming growth factor-β (TGF-β) signaling in the context of their predictive and targeting value in prostate cancer progression.

Full-text (2 Sources)

Download
23 Downloads
Available from
May 22, 2014