Article

Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients.

United States Army Institute of Surgical Research, Ft Sam Houston, TX 78234, USA.
Annals of surgery (Impact Factor: 7.19). 09/2008; 248(3):447-58. DOI: 10.1097/SLA.0b013e318185a9ad
Source: PubMed

ABSTRACT To determine the effect of blood component ratios in massive transfusion (MT), we hypothesized that increased use of plasma and platelet to red blood cell (RBC) ratios would result in decreased early hemorrhagic death and this benefit would be sustained over the ensuing hospitalization.
Civilian guidelines for massive transfusion (MT > or =10 units of RBC in 24 hours) have typically recommend a 1:3 ratio of plasma:RBC, whereas optimal platelet:RBC ratios are unknown. Conversely, military data shows that a plasma:RBC ratio approaching 1:1 improves long term outcomes in MT combat casualties. There is little consensus on optimal platelet transfusions in either civilian or military practice. At present, the optimal combinations of plasma, platelet, and RBCs for MT in civilian patients is unclear.
Records of 467 MT trauma patients transported from the scene to 16 level 1 trauma centers between July 2005 and June 2006 were reviewed. One patient who died within 30 minutes of admission was excluded. Based on high and low plasma and platelet to RBC ratios, 4 groups were analyzed.
Among 466 MT patients, survival varied by center from 41% to 74%. Mean injury severity score varied by center from 22 to 40; the average of the center means was 33. The plasma:RBC ratio ranged from 0 to 2.89 (mean +/- SD: 0.56 +/- 0.35) and the platelets:RBC ratio ranged from 0 to 2.5 (0.55 +/- 0.50). Plasma and platelet to RBC ratios and injury severity score were predictors of death at 6 hours, 24 hours, and 30 days in multivariate logistic models. Thirty-day survival was increased in patients with high plasma:RBC ratio (> or =1:2) relative to those with low plasma:RBC ratio (<1:2) (low: 40.4% vs. high: 59.6%, P < 0.01). Similarly, 30-day survival was increased in patients with high platelet:RBC ratio (> or =1:2) relative to those with low platelet:RBC ratio (<1:2) (low: 40.1% vs. high: 59.9%, P < 0.01). The combination of high plasma and high platelet to RBC ratios were associated with decreased truncal hemorrhage, increased 6-hour, 24-hour, and 30-day survival, and increased intensive care unit, ventilator, and hospital-free days (P < 0.05), with no change in multiple organ failure deaths. Statistical modeling indicated that a clinical guideline with mean plasma:RBC ratio equal to 1:1 would encompass 98% of patients within the optimal 1:2 ratio.
Current transfusion practices and survival rates of MT patients vary widely among trauma centers. Conventional MT guidelines may underestimate the optimal plasma and platelet to RBC ratios. Survival in civilian MT patients is associated with increased plasma and platelet ratios. Massive transfusion practice guidelines should aim for a 1:1:1 ratio of plasma:platelets:RBCs.

1 Bookmark
 · 
252 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic injury is the leading cause of death worldwide. The rapid evaluation and correction of injuries in these patients is paramount to preventing uncontrolled decompensation and death. Damage control strategies are a compendium of techniques refined over decades of surgical care that focus on the rapid correction of deranged physiology, control of contamination and blood loss, and resuscitation of critical patients. Damage control resuscitation (DCR) focuses on the replacement of lost blood volume in a manner mimicking whole blood, control of crystalloid administration, and permissive hypotension. Damage control laparotomy controls gastrointestinal contamination and bleeding in the operative suite, allowing rapid egress to the intensive care unit for ongoing resuscitation. Pelvic packing, an adjunct to DCR, provides a means to control hemorrhage from severe pelvic fractures. Temporary vascular shunts restore perfusion, while resuscitation and reconstruction are ongoing. Taken together, these strategies provide the trauma surgeon with a powerful arsenal to preserve life in the transition from injury to the shock trauma room to the intensive care unit.
    European Journal of Trauma and Emergency Surgery 04/2014; 40(2):143-150. · 0.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Planned re-laparotomy or damage control laparotomy (DCL), first described by Dr. Harlan Stone in 1983, has become a widely utilized technique in a broad range of patients and operative situations. Studies have validated the use of DCL by demonstrating decreased mortality and morbidity in trauma, general surgery and abdominal vascular catastrophes. Indications for planned re-laparotomy include severe physiologic derangements, coagulopathy, concern for bowel ischemia, and abdominal compartment syndrome. The immunology of DCL patients is not well described in humans, but promising animal studies suggest a benefit from the open abdomen (OA) and several human trials on this subject are currently underway. Optimal critical care of patients with OA’s, including sedation, paralysis, nutrition, antimicrobial and fluid management strategies have been associated with improved closure rates and recovery.
    European Journal of Trauma and Emergency Surgery 04/2014; 40(2):135-142. · 0.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND The purpose of this study was to characterize the cause of death in severely injured trauma patients to define potential responses to resuscitation. METHODS Prospective analysis of 190 critically injured patients who underwent massive transfusion protocol (MTP) activation or received massive transfusion (>10 U of packed red blood cells [RBC] per 24 hours). Cause of death was adjudicated into one of four categories as follows: (1) exsanguination, (2) early physiologic collapse, (3) late physiologic collapse, and (4) nonsurvivable injury. RESULTS A total 190 patients underwent massive transfusion or MTP with 76 deaths (40% mortality), of whom 72 deaths were adjudicated to one of four categories: 33.3% died of exsanguination, 16.6% died of early physiologic collapse, 11.1% died of late physiologic collapse, while 38.8% died of nonsurvivable injuries. Patients who died of exsanguination were younger and had the highest RBC/fresh frozen plasma ratio (2.97 [2.24]), although the early physiologic collapse group survived long enough to use the most blood products (p < 0.001). The late physiologic collapse group had significantly fewer penetrating injuries, was older, and had significantly more crystalloid use but received a lower RBC/fresh frozen plasma ratio (1.50 [0.42]). Those who were determined to have a nonsurvivable injury had a lower presenting Glasgow Coma Scale (GCS) score, fewer penetrating injuries, and higher initial blood pressure reflecting a preponderance of nonsurvivable traumatic brain injury. The average survival time for patients with potentially survivable injuries was 2.4 hours versus 18.4 hours for nonsurvivable injuries (p < 0.001). CONCLUSION Severely injured patients requiring MTP have a high mortality rate. However, no studies to date have addressed the cause of death after MTP. Characterization of cause of death will allow targeting of surgical and resuscitative conduct to allow extension of the physiologic reserve time, therefore rendering previously nonsurvivable injury potentially survivable. LEVEL OF EVIDENCE Prognostic study, level III.
    The Journal of Trauma and Acute Care Surgery 01/2013; 75:S255-S262. · 1.97 Impact Factor

Full-text (2 Sources)

Download
102 Downloads
Available from
May 16, 2014