Article

Nonsense-mediated decay of ash1 nonsense transcripts in Saccharomyces cerevisiae.

Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA.
Genetics (Impact Factor: 4.87). 10/2008; 180(3):1391-405. DOI: 10.1534/genetics.108.095737
Source: PubMed

ABSTRACT Nonsense-mediated mRNA decay (NMD) performs two functions in eukaryotes, one in controlling the expression level of a substantial subset of genes and the other in RNA surveillance. In the vast majority of genes, nonsense mutations render the corresponding transcripts prone to surveillance and subject to rapid degradation by NMD. To examine whether some classes of nonsense transcripts escape surveillance, we asked whether NMD acts on mRNAs that undergo subcellular localization prior to translation. In Saccharomyces cerevisiae, wild-type ASH1 mRNA is one of several dozen transcripts that are exported from the mother-cell nucleus during mitotic anaphase, transported to the bud tip on actin cables, anchored at the bud tip, and translated. Although repressed during transport, translation is a prerequisite for NMD. We found that ash1 nonsense mutations affect transport and/or anchoring independently of NMD. The nonsense transcripts respond to NMD in a manner dependent on the position of the mutation. Maximal sensitivity to NMD occurs when transport and translational repression are simultaneously impaired. Overall, our results suggest a model in which ash1 mRNAs are insensitive to NMD while translation is repressed during transport but become sensitive once repression is relieved.

0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thirteen Candida glabrata strains harboring a range of mutations in hot spot regions of FKS1 and FKS2 were studied. The mutations were linked to an echinocandin reduced susceptibility phenotype. Sequence alignments showed that 11 out of the 13 mutants harbored a mutation in FKS1 or FKS2 not previously implicated in echinocandin reduced susceptibility in C. glabrata. A detailed kinetic characterization demonstrated that amino acid substitutions in Fks1p and Fks2p reduced drug sensitivity in mutant 1,3-beta-D-glucan synthase by 2 to 3 log orders relative to that in wild-type enzyme. These mutations were also found to reduce the catalytic efficiency of the enzyme (Vmax) and to influence the relative expression of FKS genes. In view of the association of FKS mutations and reduced susceptibility of 1,3-beta-D-glucan synthase, an evaluation of the new CLSI echinocandin susceptibility breakpoint was conducted. Only 3 of 13 resistant fks mutants (23%) were considered anidulafungin or micafungin nonsusceptible (MIC > 2 microg/ml) by this criterion. In contrast, most fks mutants (92%) exceeded a MIC of >2 microg/ml with caspofungin. However, when MIC determinations were performed in the presence of 50% serum, all C. glabrata fks mutants showed MICs of > or = 2 microg/ml for the three echinocandin drugs. As has been observed with Candida albicans, the kinetic inhibition parameter 50% inhibitory concentration may be a better predictor of FKS-mediated resistance. Finally, the close association between FKS1/FKS2 hot spot mutations provides a basis for understanding echinocandin resistance in C. glabrata.
    Antimicrobial Agents and Chemotherapy 06/2009; 53(9):3690-9. DOI:10.1128/AAC.00443-09 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3'-untranslated regions (3'-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3'-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3'-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3'-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3'-UTR renders it immune to NMD. The natural PGA1 3'-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.
    Nucleic Acids Research 04/2009; 37(9):2771-8. DOI:10.1093/nar/gkp146 · 8.81 Impact Factor

Full-text (2 Sources)

Download
26 Downloads
Available from
Jun 3, 2014