Article

Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies.

Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2008; 105(38):14459-64. DOI: 10.1073/pnas.0807235105
Source: PubMed

ABSTRACT With their unique ability to differentiate into all cell types, embryonic stem (ES) cells hold great therapeutic promise. To improve the efficiency of embryoid body (EB)-mediated ES cell differentiation, we studied murine EBs on the basis of their size and found that EBs with an intermediate size (diameter 100-300 microm) are the most proliferative, hold the greatest differentiation potential, and have the lowest rate of cell death. In an attempt to promote the formation of this subpopulation, we surveyed several biocompatible substrates with different surface chemical parameters and identified a strong correlation between hydrophobicity and EB development. Using self-assembled monolayers of various lengths of alkanethiolates on gold substrates, we directly tested this correlation and found that surfaces that exhibit increasing hydrophobicity enrich for the intermediate-size EBs. When this approach was applied to the human ES cell system, similar phenomena were observed. Our data demonstrate that hydrophobic surfaces serve as a platform to deliver uniform EB populations and may significantly improve the efficiency of ES cell differentiation.

Full-text

Available from: Eric Gschweng, May 05, 2015
0 Followers
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dense arrays of nanostructures were fabricated in polymer surfaces over large areas (1 cm x 1 cm) using laser interference lithography and low power CF4/O2 plasma etching. The dependence of etch rate and etch anisotropy on plasma composition was studied in detail for polystyrene and 4 distinct regimes were identified. In each of these regimes, the polystyrene nanostructures exhibit characteristic variations of etch rate, etch anisotropy and surface chemistry that were found to be closely related to the level of fluorination and polymerization on the substrate surface. A new technique, stitch etching, was developed and utilized in conjunction with low power plasma etching to increase the height of nanostructures without loss of array density. These nanofabrication techniques are shown to be versatile enough to be applied to a variety of polymers. The polymeric nanostructures were found to exhibit a number of useful properties including superhydrophobicity (directional effect, lotus leaf effect and rose petal effect), structural stiffness and biocompatibility, which were shown to be useful in applications such as self-cleaning surfaces, nanoimprinting molds and biocompatible substrates for neurite guidance.
    07/2014; 2(36). DOI:10.1039/C4TB00836G
  • [Show abstract] [Hide abstract]
    ABSTRACT: This Letter examines the physical and chemical changes that occur at the interface of methyl-terminated alkanethiol self-assembled monolayers (SAMs) after exposure to cell culture media used to derive embryoid bodies (EBs) from pluripotent stem cells. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy analysis of the SAMs indicates that protein components within the EB cell culture medium preferentially adsorb at the hydrophobic interface. In addition, we examined the adsorption process using surface plasmon resonance and atomic force microscopy. These studies identify the formation of a porous, mat-like adsorbed protein film with an approximate thickness of 2.5 nm. Captive bubble contact angle analysis reveals a shift toward superhydrophilic wetting behavior at the cell culture interface due to adsorption of these proteins. These results show how EBs are able to remain in suspension when derived on hydrophobic materials, which carries implications for the rational design of suspension culture interfaces for lineage specific stem-cell differentiation.Keywords: pluripotent stem cells; self-assembled monolayers; protein adsorption; wettability; biointerfaces
    Journal of Physical Chemistry Letters 02/2015; 6(3):388-393. DOI:10.1021/jz502520r · 6.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple, scalable, and reproducible technology that allows direct formation of large numbers of homogeneous and synchronized embryoid bodies (EBs) of defined sizes from dissociated human induced pluripotent stem cells (hiPSCs) was developed. Non-cell-adhesive hydrogels were used to create round-bottom microwells to host dissociated hiPSCs. No Rho-associated kinase inhibitor (ROCK-i), or centrifugation was needed and the side effects of ROCK-i can be avoided. The key requirement for the successful EB formation in addition to the non-cell-adhesive round-bottom microwells is the input cell density per microwell. Too few or too many cells loaded into the microwells will compromise the EB formation process. In parallel, we have tested our microwell-based system for homogeneous hEB formation from dissociated human embryonic stem cells (hESCs). Successful production of homogeneous hEBs from dissociated hESCs in the absence of ROCK-i and centrifugation was achieved within an optimal range of input cell density per microwell. Both the hiPSC- and hESC-derived hEBs expressed key proteins characteristic of all the three developmental germ layers, confirming their EB identity. This novel EB production technology may represent a versatile platform for the production of homogeneous EBs from dissociated human pluripotent stem cells (hPSCs).
    Scientific Reports 12/2014; 4:7402. DOI:10.1038/srep07402 · 5.08 Impact Factor