Article

Overexpression of interleukin-1 beta in the murine pancreas results in chronic pancreatitis

Division of Digestive and Liver Diseases, Columbia University Medical Center, New York 10032, USA.
Gastroenterology (Impact Factor: 12.82). 08/2008; 135(4):1277-87. DOI: 10.1053/j.gastro.2008.06.078
Source: PubMed

ABSTRACT Chronic pancreatitis is a significant cause of morbidity and a known risk factor for pancreatic adenocarcinoma. Interleukin-1beta is a proinflammatory cytokine involved in pancreatic inflammation. We sought to determine whether targeted overexpression of interleukin-1beta in the pancreas could elicit localized inflammatory responses and chronic pancreatitis.
We created a transgenic mouse model (elastase sshIL-1beta) in which the rat elastase promoter drives the expression of human interleukin-1beta. Mice were followed up for up to 2 years. Pancreata of elastase sshIL-1beta mice were analyzed for chronic pancreatitis-associated histologic and molecular changes. To study the potential effect of p53 mutation in chronic pancreatitis, elastase sshIL-1beta mice were crossed with p53(R172H) mice.
Three transgenic lines were generated, and in each line the pancreas was atrophic and occasionally showed dilation of pancreatic and biliary ducts secondary to proximal fibrotic stenosis. Pancreatic histology showed typical features of chronic pancreatitis. There was evidence for increased acinar proliferation and apoptosis, along with prominent expression of tumor necrosis factor-alpha; chemokine (C-X-C motif) ligand 1; stromal cell-derived factor 1; transforming growth factor-beta1; matrix metallopeptidase 2, 7, and 9; inhibitor of metalloproteinase 1; and cyclooxygenase 2. The severity of the lesions correlated well with the level of human interleukin-1beta expression. Older mice displayed acinar-ductal metaplasia but did not develop mouse pancreatic intraepithelial neoplasia or tumors. Elastase sshIL-1beta*p53(R172H/+) mice had increased frequency of tubular complexes, some of which were acinar-ductal metaplasia.
Overexpression of interleukin-1beta in the murine pancreas induces chronic pancreatitis. Elastase sshIL-1beta mice consistently develop severe chronic pancreatitis and constitute a promising model for studying chronic pancreatitis and its relationship with pancreatic adenocarcinoma.

0 Bookmarks
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The strong up-regulation of inflammatory mediators has been reported to play a key role in acute pancreatitis (AP). Elevated serum levels of interleukin-1β (IL-1β) are associated with the development of AP. However, the precise effect and mechanism of IL-1β in AP remains obscure. In this study, we investigated the potential role and mechanism of IL-1β in AP. We measured autophagy activation in response to IL-1β in AR42J cells. The disrupting effects of IL-1β on cellular Ca(2+) were observed. To determine whether the disruption of Ca(2+) signaling has protective effects in vivo during AP, male C57BL/6 mice were treated with cerulein to induce AP. We found that the treatment of AR42J cells with IL-1β triggered autophagy and that the autophagic flux was impaired. In addition, IL-1β induced Ca(2+) release from the ER. Furthermore, the expression of the ER stress markers GRP78 and IRE1 also increased. 2APB, an antagonist of the InsP3 receptor, inhibited increased expression of autophagy markers. Subsequent biochemical assays revealed that co-culture with IL-1β could induce the activation of trypsinogen to trypsin and reduce the viability of acinar cells. Pathological changes of the pancreas were also observed in vivo. We found that the pathological injuries of the pancreas were significantly alleviated in mice co-treated with 2APB. Taken together, our results indicate that IL-1β can induce trypsin activation and decrease cellular viability in pancreatic acinar cells. These effects depend on impaired autophagy via intracellular calcium changes. Ca(2+) signaling may become a promising therapeutic target in the treatment of pancreatitis.
  • Gastroenterology 04/2014; 146(7). DOI:10.1053/j.gastro.2014.04.025 · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progress made in identifying the genetic susceptibility underlying acute and chronic pancreatitis has benefitted the clinicians in understanding the pathogenesis of the disease in a better way. The identification of mutations in cationic trypsinogen gene (PRSS1 gene; functional gain mutations) and serine protease inhibitor kazal type 1 (SPINK1 gene; functional loss mutations) and other potential susceptibility factors in genes that play an important role in the pancreatic secretory functions or response to inflammation during pancreatic injury has changed the current concepts and understanding of a complex multifactorial disease like pancreatitis. An individual's susceptibility to the disease is governed by genetic factors in combination with environmental factors. Candidate gene and genetic linkage studies have identified polymorphisms in cationic trypsinogen (PRSS1), SPINK1, cystic fibrosis trans-membrane conductance regulator (CFTR), Chymotrypsinogen C (CTRC), Cathepsin B (CTSB) and calcium sensing receptor (CASR). Individuals with polymorphisms in the mentioned genes and other as yet identified genes are at an enhanced risk for the disease. Recently, polymorphisms in genes other than those involved in "intra-pancreatic trypsin regulatory mechanism" namely Claudin-2 (CLDN2) and Carboxypeptidase A1 (CPA1) gene have also been identified for their association with pancreatitis. With ever growing number of studies trying to identify the genetic susceptibility in the form of single nucleotide polymorphisms, this review is an attempt to compile the available information on the topic.
    11/2014; 5(4):427-37. DOI:10.4291/wjgp.v5.i4.427

Full-text (2 Sources)

Download
37 Downloads
Available from
May 22, 2014