Time Course of Hepatic 1-Methylpyrene DNA Adducts in Rats Determined by Isotope Dilution LC-MS/MS and P-32-Postlabeling

Department of Toxicology, German Institute of Human Nutrition (DIfE), 14558 Nuthetal, Germany.
Chemical Research in Toxicology (Impact Factor: 4.19). 10/2008; 21(10):2017-25. DOI: 10.1021/tx800217d
Source: PubMed

ABSTRACT The alkylated polycyclic aromatic hydrocarbon 1-methylpyrene is a carcinogen in rodents and has been detected in various environmental matrices and foodstuffs. It is activated metabolically by benzylic hydroxylation to 1-hydroxymethylpyrene followed by sulfoconjugation to yield electrophilic 1-sulfooxymethylpyrene (1-SMP) that is prone to form DNA adducts. An LC-MS/MS method using multiple reaction monitoring (MRM) of fragment ions has been developed for specific detection and quantification of N (2)-(1-methylpyrenyl)-2'-deoxyguanosine (MP-dGuo) and N (6)-(1-methylpyrenyl)-2'-deoxyadenosine (MP-dAdo) formed in DNA in the presence of 1-SMP. DNA samples were spiked with stable isotope internal standards, [ (15)N 5, (13)C 10]MP-dGuo and [ (15)N 5]MP-dAdo, followed by enzymatic digestion to 2'-deoxynucleosides and solid-phase extraction to remove unmodified 2'-deoxynucleosides prior to analysis by LC-MS/MS. The limits of detection were 10 fmol of MP-dGuo and 2 fmol of MP-dAdo or three molecules of MP-dGuo and 0.6 molecules of MP-dAdo per 10 (8) 2'-deoxynucleosides using 100 mug of herring sperm DNA as the sample matrix. The method was validated with herring sperm DNA reacted with 1-SMP in vitro. Hepatic DNA was analyzed from rats that were dosed intraperitoneally with 9.3 mg 1-SMP per kg body weight and killed after various time periods. Levels of MP-dGuo and MP-dAdo in rat liver were found to increase, reaching their maxima at approximately 3 h, and then decrease over time. A good correlation was observed between the results obtained using LC-MS/MS and MRM and those from (32)P-postlabeling. MRM allowed the more precise quantification of specific 1-MP adducts, in addition to a time reduction of the analysis when compared with (32)P-postlabeling.

  • [Show abstract] [Hide abstract]
    ABSTRACT: 1-Methylpyrene (1-MP), an abundant alkylated polycyclic aromatic hydrocarbon, is activated by side-chain hydroxylation to 1-hydroxymethylpyrene (1-HMP) and subsequent sulfo-conjugation to electrophilic 1-sulfooxymethylpyrene (1-SMP). In rats, this activation mainly occurs in liver. 1-SMP may react with hepatic DNA or be exported into the blood circulation to reach other tissues, in particular kidneys. Findings with recombinant cell lines suggest that renal 1-SMP uptake proceeds via organic anion transporters (OATs). Here, we tested the hypothesis that probenecid, a characteristic OAT inhibitor, interferes with kidney damage brought about by 1-SMP formed in rats. 1-HMP was administered intraperitoneally to 30 rats, half of which were co-treated with probenecid. The tissue distribution of DNA adducts was analyzed using (32)P-postlabeling and isotope dilution LC-MS/MS for the detection of the adducts N(2)-(1-methylpyrenyl)-2'-deoxyguanosine and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine. In rats treated solely with 1-HMP, adduct levels in kidney tissue were about 3-fold and 8-fold higher than those in liver and lung, respectively. After co-treatment with probenecid, hepatic and pulmonary adduct levels were 12-fold and 4-fold elevated, respectively, whereas renal adduct levels were slightly lower compared to those of rats receiving 1-HMP alone. Moreover, serum levels of 1-SMP were increased 23-fold in animals pre-treated with probenecid. The differential effects on hepatic and pulmonary adduct levels suggest that not only renal OATs, but also additional anion transporters, e.g. those mediating the hepatic export of 1-SMP into the bile, were inhibited. Thus, transmembrane transport proteins play a crucial role in the distribution of reactive phase II metabolites, and thereby in tissue allocation of DNA adducts.
    Toxicology 06/2009; 262(1):80-5. DOI:10.1016/j.tox.2009.05.016 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platinum compounds are the major group of metal-based chemotherapeutic drug used in current practice and still a topic of intense investigation. The relative contribution of structurally defined cisplatin adducts with DNA to induce apoptosis and the cellular processing of these lesions is still poorly understood mostly due to the lack of sensitive and accurate analytical tools for in vivo studies. In this regard, two novel sensitive and selective strategies are proposed here to quantify cisplatin-DNA adducts generated in Drosophila melanogaster larvae and in head and neck squamous cell carcinoma cultures. The methods involve the isolation and enzymatic digestion of the DNA in the samples exposed to cisplatin and further quantification by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection (HPLC-ICPMS). Two different strategies, based on isotope dilution analysis (IDA), have been attempted and evaluated for quantification: species-unspecific (the postcolumn addition of a 194Pt-enriched solution) and the species-specific (by means of a synthesized isotopically enriched cisplatin (194Pt) adduct). For the second approach, the synthesis and characterization of the cisplatin adduct in a custom oligonucleotide containing the sequence (5'-TCCGGTCC-3') was necessary. The adducted oligo was then added to the DNA samples either before or after enzymatic hydrolysis. The results obtained using these two strategies (mixing before and after enzymatic treatment) permit to address, quantitatively, the column recoveries as well as the efficiency of the enzymatic hydrolysis. Species-specific spiking before enzymatic digestion provided accurate and precise analytical results to clearly differentiate between Drosophila samples and carcinoma cell cultures exposed to different cisplatin concentrations.
    Analytical Chemistry 11/2009; 81(23):9553-60. DOI:10.1021/ac901360f · 5.83 Impact Factor