Cortical Surface Reconstruction via Unified Reeb Analysis of Geometric and Topological Outliers in Magnetic Resonance Images

IEEE transactions on medical imaging 10/2012; 32(3). DOI: 10.1109/TMI.2012.2224879
Source: PubMed


In this paper we present a novel system for the automated reconstruction of cortical surfaces from T1-weighted magnetic resonance images. At the core of our system is a unified Reeb analysis framework for the detection and removal of geometric and topological outliers on tissue boundaries. Using intrinsic Reeb analysis, our system can pinpoint the location of spurious branches and topological outliers, and correct them with localized filtering using information from both image intensity distributions and geometric regularity. In this system, we have also developed enhanced tissue classification with Hessian features for improved robustness to image inhomogeneity, and adaptive interpolation to achieve sub-voxel accuracy in reconstructed surfaces. By integrating these novel developments, we have a system that can automatically reconstruct cortical surfaces with improved quality and dramatically reduced computational cost as compared with the popular FreeSurfer software. In our experiments, we demonstrate on 40 simulated MR images and the MR images of 200 subjects from two databases: the Alzheimers Disease Neuroimaging Initiative (ADNI) and International Consortium of Brain Mapping (ICBM), the robustness of our method in large scale studies. In comparisons with FreeSurfer, we show that our system is able to generate surfaces that better represent cortical anatomy and produce thickness features with higher statistical power in population studies.

Download full-text


Available from: Rongjie Lai, Apr 02, 2014
11 Reads
  • Source
    • "Here we focus on the change of gray matter thickness with age. Gray matter thickness at each point of the pial surface was computed as the shortest distance to the white matter surface [26] Fig. 12. Regression results on the left hemisphere. (a) Results of the superior-fronal, inferior frontal, superior-parietal, medial-occipital, and medial-temporal gyrus. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigensystem, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a crossvalidation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects.
    03/2014; 33(7). DOI:10.1109/TMI.2014.2313812
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we develop a novel approach for computing conformal maps between anatomical surfaces with the ability of aligning anatomical features and achieving greatly reduced metric distortion. In contrast to conventional approaches that focused on conformal maps to the sphere or plane, our method computes the conformal map between surfaces in the embedding space formed the intrinsically defined Laplace-Beltrami (LB) eigenfunctions. Utilizing the power of LB eigenfunctions as informative descriptors of global geometry, the conformal maps computed by our method can effectively align anatomical features on cortical surfaces. By computing such feature-aware conformal maps to a group-wisely optimal atlas surface, which is also computed with metric optimization in the LB embedding space, we develop a fully automated system for cortical labeling with the fusion of labels on a large number of atlas surfaces. In our experiments, we build our system with 40 labeled surfaces and demonstrate its excellent performance with leave-one-out cross validation. We also applied the automated labeling system to cortical surfaces reconstructed from MR scans of 50 patients with Alzheimer's disease (AD) and 50 normal controls (NC) to illustrate its robustness and effectiveness in clinical data analysis.
    Information processing in medical imaging: proceedings of the ... conference 06/2013; 23:244-55. DOI:10.1007/978-3-642-38868-2_21
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, numerous laboratories and consortia have used neuroimaging to evaluate the risk for and progression of Alzheimer's disease (AD). The Alzheimer's Disease Neuroimaging Initiative is a longitudinal, multicenter study that is evaluating a range of biomarkers for use in diagnosis of AD, prediction of patient outcomes, and clinical trials. These biomarkers include brain metrics derived from magnetic resonance imaging (MRI) and positron emission tomography scans as well as metrics derived from blood and cerebrospinal fluid. We focus on Alzheimer's Disease Neuroimaging Initiative studies published between 2011 and March 2013 for which structural MRI was a major outcome measure. Our main goal was to review key articles offering insights into progression of AD and the relationships of structural MRI measures to cognition and to other biomarkers in AD. In Supplement 1, we also discuss genetic and environmental risk factors for AD and exciting new analysis tools for the efficient evaluation of large-scale structural MRI data sets such as the Alzheimer's Disease Neuroimaging Initiative data.
    Biological psychiatry 11/2013; 75(7). DOI:10.1016/j.biopsych.2013.11.020 · 10.26 Impact Factor
Show more