Article

An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.

Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, India, .
Molecular Biology Reports (Impact Factor: 1.96). 10/2012; 40(2). DOI: 10.1007/s11033-012-2153-3
Source: PubMed

ABSTRACT Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

0 Bookmarks
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Deletion of STL1, which encodes a member of the sugar transporter family, eliminates active glycerol transport. Stl1p is present in the plasma membrane in S. cerevisiae during conditions where glycerol symport is functional. Both the Stl1 protein and the active glycerol transport are subject to glucose-induced inactivation, following identical patterns. Furthermore, the Stl1 protein and the glycerol symporter activity are strongly but transiently induced when cells are subjected to osmotic shock. STL1 was heterologously expressed in Schizosaccharomyces pombe, a yeast that does not contain its own active glycerol transport system. In S. pombe, STL1 conferred the ability to take up glycerol against a concentration gradient in a proton motive force-dependent manner. We conclude that the glycerol proton symporter in S. cerevisiae is encoded by STL1.
    Molecular Biology of the Cell 05/2005; 16(4):2068-76. DOI:10.1091/mbc.E04-10-0884 · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Budding yeast adjusts to increases in external osmolarity via a specific mitogen-activated protein kinase signal pathway, the high-osmolarity glycerol response (HOG) pathway. Studies with a functional Hog1-green fluorescent protein (GFP) fusion reveal that even under nonstress conditions the mitogen-activated protein kinase Hog1 cycles between cytoplasmic and nuclear compartments. The basal distribution of the protein seems independent of its activator, Pbs2, and independent of its phosphorylation status. Upon osmotic challenge, the Hog1-GFP fusion becomes rapidly concentrated in the nucleus from which it is reexported after return to an iso-osmotic environment or after adaptation to high osmolarity. The preconditions and kinetics of increased nuclear localization correlate with those found for the dual phosphorylation of Hog1-GFP. The duration of Hog1 nuclear residence is modulated by the presence of the general stress activators Msn2 and Msn4. Reexport of Hog1 to the cytoplasm does not require de novo protein synthesis but depends on Hog1 kinase activity. Thus, at least three different mechanisms contribute to the intracellular distribution pattern of Hog1: phosphorylation-dependent nuclear accumulation, retention by nuclear targets, and a kinase-induced export.
    Molecular Biology of the Cell 05/1999; 10(4):1147-61. DOI:10.1091/mbc.10.4.1147 · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Saccharomyces cerevisiae FPS1 gene, which encodes a channel protein belonging to the MIP family, has been isolated previously as a multicopy suppressor of the growth defect of the fdp1 mutant (allelic to GGS1/TPS1) on fermentable sugars. Here we show that overexpression of FPS1 enhances glycerol production. Enhanced glycerol production caused by overexpression of GPD1 encoding glycerol-3-phosphate dehydrogenase also suppressed the growth defect of ggs1/tps1 delta mutants, suggesting a novel role for glycerol production in the control of glycolysis. The suppression of ggs1/tps1 delta mutants by GPD1 depends on the presence of Fps1. Mutants lacking Fps1 accumulate a greater part of the glycerol intracellularly, indicating that Fps1 is involved in glycerol efflux. Glycerol-uptake experiments showed that the permeability of the yeast plasma membrane for glycerol consists of an Fps1-independent component probably due to simple diffusion and of an Fps1-dependent component representing facilitated diffusion. The Escherichia coli glycerol facilitator expressed in a yeast fps1 delta mutant can restore the characteristics of glycerol uptake, production and distribution fully, but restores only partially growth of a ggs1/tps1 delta fps1 delta double mutant on glucose. Fps1 appears to be closed under hyperosmotic stress when survival depends on intracellular accumulation of glycerol and apparently opens rapidly when osmostress is lifted. The osmostress-induced High Osmolarity Glycerol (HOG) response pathway is not required for inactivation of Fps1. We conclude that Fps1 is a regulated yeast glycerol facilitator controlling glycerol production and cytosolic concentration, and might have additional functions.
    The EMBO Journal 05/1995; 14(7):1360-71. · 10.75 Impact Factor

Full-text

Download
25 Downloads
Available from
Jul 4, 2014