Article

Cyclic Test Comparison of All-Inside Device and Inside-Out Sutures for Radial Meniscus Lesion Repair: An In Vitro Porcine Model Study

Division of Sports Medicine, Department of Orthopaedic Surgery, University of Louisville, Louisville, Kentucky, U.S.A.
Arthroscopy The Journal of Arthroscopic and Related Surgery (Impact Factor: 3.19). 10/2012; 28(12). DOI: 10.1016/j.arthro.2012.06.015
Source: PubMed

ABSTRACT PURPOSE: To compare biomechanical fixation and gapping characteristics of a new all-inside meniscus repair method for radial meniscus lesion repair versus conventional inside-out suture repair under submaximal cyclic loading and load-to-failure test conditions. METHODS: Fresh-frozen porcine tibiae with attached lateral menisci and joint capsules were harvested and stored for 48 hours at -20°C. After thawing for 12 hours, equivalent-size healthy specimens were randomly assigned to 2 groups of 8 specimens each. Standardized radial lesions were repaired with the Sequent device (ConMed Linvatec, Largo, FL) (group 1) or conventional inside-out suturing with No. 2-0 braided polyester suture (group 2). Repaired specimens were placed in custom clamps and mounted on a servohydraulic device. After a 2-N preload, specimens were cycled from 5 to 20 N (0.1 Hz), before undergoing 1,000 submaximal loading cycles between 5 and 20 N (0.5 Hz). A 40-second delay at 100, 500, and 1,000 cycles enabled digital photographs to be taken for gapping measurement determination. Specimens then underwent load-to-failure testing (12.5 mm/s). Fixation failure mode was documented. RESULTS: Group displacement did not differ after 1, 100, 500, and 1,000 submaximal loading cycles. Group peak gapping did not differ at 100, 500, and 1,000 submaximal loading cycles. Load at failure and displacement and stiffness during load-to-failure testing did not differ between groups. During load-to-failure testing, all-inside specimens failed by implant dislodgement from the meniscus periphery whereas the inside-out repaired specimens failed by suture rupture. CONCLUSIONS: Under controlled in vitro biomechanical test conditions, the all-inside device provided radial meniscus lesion fixation that was comparable, but not superior, to conventional inside-out suturing. CLINICAL RELEVANCE: The all-inside radial lateral meniscus lesion repair method may provide comparable fixation to conventional inside-out suturing without the need for additional incisions and their associated neurovascular injury risks.

0 Followers
 · 
64 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:A tear of the posterior medial meniscus root (PMMR) is increasingly recognized as a serious knee joint injury. Several suture techniques for arthroscopic transtibial pull-out repair have been described; however, only limited data about the biomechanical properties of these techniques are currently available. HYPOTHESIS:There are significant differences between the tested suture techniques, with more complex suture configurations providing superior biomechanical properties. STUDY DESIGN:Controlled laboratory study. METHODS:A total of 40 porcine medial menisci were randomly assigned to 1 of 4 groups (10 specimens each) according to suture technique: two simple stitches (TSS), horizontal mattress suture (HMS), modified Mason-Allen suture (MMA), and two modified loop stitches (TLS). Meniscus-suture constructs were subjected to cyclic loading followed by load-to-failure testing in a servohydraulic material testing machine. RESULTS:During cyclic loading, the HMS and TLS groups showed a significantly higher displacement after 100, 500, and 1000 cycles compared with the TSS and MMA groups. After 1000 cycles, the highest displacement was found for the TLS group, with significant differences compared with all other groups. During load-to-failure testing, the highest maximum load and yield load were observed for the MMA group, with statistically significant differences compared with the TSS and TLS groups. With regard to stiffness, the TSS and MMA groups showed significantly higher values compared with the HMS and TLS groups. CONCLUSION:The MMA technique provided the best biomechanical properties with regard to cyclic loading and load-to-failure testing. The TSS technique seems to be a valuable alternative. Both the HMS and TLS techniques have the disadvantage of lower stiffness and higher displacement during cyclic loading. CLINICAL RELEVANCE:Using a MMA technique may improve healing rates and avoid progressive extrusion of the medial meniscus after transtibial pull-out repair of PMMR tears. The TSS technique may be used as an alternative that is easier to perform, but a more careful rehabilitation program is possibly necessary to avoid early failure.
    The American Journal of Sports Medicine 09/2013; 41(12). DOI:10.1177/0363546513502464 · 4.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:Posterior medial meniscus root (PMMR) tears have a serious effect on knee joint biomechanics. Currently used techniques for refixation of the PMMR include the transtibial pull-out repair (TP) and suture anchor repair (SA). These techniques have not been compared biomechanically. HYPOTHESIS:The SA technique provides superior biomechanical properties compared with the TP technique. STUDY DESIGN:Controlled laboratory study. METHODS:A total of 24 fresh-frozen porcine tibiae with attached intact medial menisci were used. The specimens were randomly assigned to 3 groups (8 specimens each). A standardized PMMR tear was created in 16 specimens. Refixation of the PMMR was performed by either the TP or SA technique. The native PMMR was left intact in 8 specimens. All specimens were subjected to cyclic loading followed by load-to-failure testing. Displacement after 100, 500, and 1000 cycles; maximum load to failure; stiffness; and displacement at failure were recorded. RESULTS:Both repair techniques showed a significantly higher displacement during cyclic loading and a significantly lower maximum load and stiffness during load-to-failure testing compared with the native PMMR (P < .05). The SA technique showed a significantly lower displacement after 100, 500, and 1000 cycles (P < .001) and a significantly higher stiffness (P = .016) compared with the TP technique. Maximum load did not differ significantly between the SA and TP techniques (P = .027, Bonferroni adjustment). No significant difference between the 3 groups was observed for displacement at failure (P > .05). CONCLUSION:The SA technique provided superior biomechanical properties compared with the TP technique. Both repair techniques did not reach the strength of the native PMMR. CLINICAL RELEVANCE:The favorable biomechanical properties of the SA technique might be beneficial for healing of the repaired PMMR and restoration of meniscus function. Because of inferior time zero stability compared with the native PMMR, slow rehabilitation is recommended after meniscus root repair.
    The American Journal of Sports Medicine 09/2013; 42(1). DOI:10.1177/0363546513502946 · 4.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:All-inside meniscus repair eliminates the need for an extra incision and decreases neurovascular injury risk. Biomechanical testing can help delineate the efficacy of all-inside device use. HYPOTHESIS:There would be no group differences between 4 peripheral meniscus repair techniques and 3 different devices tested. STUDY DESIGN:Controlled laboratory study. METHODS:Equivalent-sized menisci with attached tibiae were randomly assigned to 1 of 4 test groups (8 specimens each), as follows: group 1, Fast-Fix using No. 0 braided polyester suture; group 2, inside-out repair using 2-0 braided polyester suture; group 3, Sequent using No. 0 ultra-high molecular weight polyethylene (UHMWPE) suture in a continuous "N" configuration; and group 4, Sequent using No. 0 UHMWPE suture in an interrupted configuration. After placement in a clamp, specimens underwent preconditioning from 5 to 20 N for 10 cycles (0.1 Hz), 500 submaximal loading cycles from 5 to 20 N (0.5 Hz), and load-to-failure testing at 12.5 mm/s. A 30-second pause after 10 preconditioning cycles and after 10, 100, and 500 submaximal loading cycles enabled digital photographs to be taken for gapping measurements. Failure mode was recorded. RESULTS:Specimens in group 3 withstood greater failure loads than did those in groups 1 and 4 (P ≤ .027), and group 3 specimens were stiffer than those in groups 2 and 4 (P ≤ .048). Displacement during submaximal loading and load-to-failure testing did not differ between groups. Groups 1, 3, and 4 each gapped less than group 2 during submaximal cyclic loading (P ≤ .05). Groups 1 and 2 failed primarily by suture breakage (P < .0001), while groups 3 and 4 failed primarily by the suture pulling free from an implant (P < .0001). CONCLUSION:Sequent using No. 0 UHMWPE suture in a continuous "N" configuration displayed superior load at failure compared with repairs using Fast-Fix with No. 0 braided polyester suture and displayed greater stiffness and less gapping than inside-out repair using 2-0 braided polyester suture. The suture pulling free from an implant was the primary failure mode for Sequent using No. 0 UHMWPE suture regardless of whether a continuous "N" or an interrupted configuration was used. Study groups that used No. 0 UHMWPE sutures (groups 3 and 4) had more specimens fail by the suture pulling free from an implant. Compared with the weaker braided polyester suture in the inside-out and Fast-Fix groups, the No. 0 UHMWPE suture used in the Sequent groups likely influenced study results, as this suture has stronger material properties. However, the continuous "N" configuration likely also improved the performance of the Sequent with No. 0 UHMWPE suture, as failure load was significantly less with an interrupted configuration. CLINICAL RELEVANCE:All-inside meniscus repair with continuous suture function may translate into improved patient outcomes.
    The American Journal of Sports Medicine 03/2013; 41(5). DOI:10.1177/0363546513479775 · 4.70 Impact Factor