Article

The Kinetochore-Bound Ska1 Complex Tracks Depolymerizing Microtubules and Binds to Curved Protofilaments

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Developmental Cell (Impact Factor: 10.37). 10/2012; 23(5). DOI: 10.1016/j.devcel.2012.09.012
Source: PubMed

ABSTRACT To ensure equal chromosome segregation during mitosis, the macromolecular kinetochore must remain attached to depolymerizing microtubules, which drive chromosome movements. How kinetochores associate with depolymerizing microtubules, which undergo dramatic structural changes forming curved protofilaments, has yet to be defined in vertebrates. Here, we demonstrate that the conserved kinetochore-localized Ska1 complex tracks with depolymerizing microtubule ends and associates with both the microtubule lattice and curved protofilaments. In contrast, the Ndc80 complex, a central player in the kinetochore-microtubule interface, binds only to the straight microtubule lattice and lacks tracking activity. We demonstrate that the Ska1 complex imparts its tracking capability to the Ndc80 complex. Finally, we present a structure of the Ska1 microtubule-binding domain that reveals its interaction with microtubules and its regulation by Aurora B. This work defines an integrated kinetochore-microtubule interface formed by the Ska1 and Ndc80 complexes that associates with depolymerizing microtubules, potentially by interacting with curved microtubule protofilaments.

Download full-text

Full-text

Available from: Ekaterina L Grishchuk, Jan 04, 2014
0 Followers
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 15% of eukaryotes contain supernumerary B chromosomes. When present, B chromosomes frequently represent as much as 5% of the genome. Despite thousands of reports describing the distribution of supernumeraries in various taxa, a comprehensive theory for the origin, maintenance and evolution of B chromosomes has not emerged. Here we sequence the complete genomes of individual cichlid fish (Astatotilapia latifasciata) with and without B chromosomes, as well as microdissected B chromosomes, to identify DNA sequences on the B. B sequences were further analyzed through qPCR and in situ hybridization. We find that the B chromosome contains thousands of sequences duplicated from essentially every chromosome in the ancestral karyotype. Although most genes on the B chromosome are fragmented, a few are largely intact and we detect evidence that at least three of them are transcriptionally active. We propose a model in which the B chromosome originated early in the evolutionary history of Lake Victoria cichlids from a small fragment of one autosome. DNA sequences originating from several autosomes, including protein-coding genes and transposable elements, subsequently inserted into this proto-B. We propose that intact B chromosome genes involved with spindle fusion and kinetochore attachment may play a role in driving the transmission of the B chromosome. Furthermore, our work suggests that karyotyping is an essential step prior to genome sequencing to avoid problems in genome assembly as well as analytical biases created by the presence of high copy number sequences on the B chromosome.
    Molecular Biology and Evolution 04/2014; 31(8):2061-2072. DOI:10.1093/molbev/msu148 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 µm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation. Expected final online publication date for the Annual Review of Genetics Volume 48 is November 23, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Genetics 09/2014; DOI:10.1146/annurev-genet-120213-092033 · 18.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules execute diverse mitotic events that are spatially and temporally separated; the underlying regulation is poorly understood. By combining drug treatments, large-scale immunoprecipitation and mass spectrometry, we report the first comprehensive map of mitotic phase-specific protein interactions of the microtubule-end binding protein, EB1. EB1 interacts with some, but not all, of its partners throughout mitosis. We show that the interaction of EB1 with Astrin-SKAP complex, a key regulator of chromosome segregation, is enhanced during prometaphase, compared to anaphase. We find that EB1 and EB3, another EB family member, can interact directly with SKAP, in an SXIP-motif dependent manner. Using an SXIP defective mutant that cannot interact with EB, we uncover two distinct pools of SKAP at spindle microtubules and kinetochores. We demonstrate the importance of SKAP's SXIP-motif in controlling microtubule growth rates and anaphase onset, without grossly disrupting spindle function. Thus, we provide the first comprehensive map of temporal changes in EB1 interactors during mitosis and highlight the importance of EB protein interactions in ensuring normal mitosis. © 2015. Published by The Company of Biologists Ltd.
    01/2015; 4(2). DOI:10.1242/bio.201410413