Article

The Kinetochore-Bound Ska1 Complex Tracks Depolymerizing Microtubules and Binds to Curved Protofilaments

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Developmental Cell (Impact Factor: 10.37). 10/2012; 23(5). DOI: 10.1016/j.devcel.2012.09.012
Source: PubMed

ABSTRACT To ensure equal chromosome segregation during mitosis, the macromolecular kinetochore must remain attached to depolymerizing microtubules, which drive chromosome movements. How kinetochores associate with depolymerizing microtubules, which undergo dramatic structural changes forming curved protofilaments, has yet to be defined in vertebrates. Here, we demonstrate that the conserved kinetochore-localized Ska1 complex tracks with depolymerizing microtubule ends and associates with both the microtubule lattice and curved protofilaments. In contrast, the Ndc80 complex, a central player in the kinetochore-microtubule interface, binds only to the straight microtubule lattice and lacks tracking activity. We demonstrate that the Ska1 complex imparts its tracking capability to the Ndc80 complex. Finally, we present a structure of the Ska1 microtubule-binding domain that reveals its interaction with microtubules and its regulation by Aurora B. This work defines an integrated kinetochore-microtubule interface formed by the Ska1 and Ndc80 complexes that associates with depolymerizing microtubules, potentially by interacting with curved microtubule protofilaments.

0 Followers
 · 
149 Views
  • Source
    • "Overexpression of AURK-A has been shown to be associated with aneuploidy, chromosome instablity, tumorigenic transformation and progression in mammalian cells (Bischoff et al. 1998; revised in Gómez-López et al. 2014). AURK-B has been shown to regulate SKA1 (Schmidt et al. 2012). KIF11 is a protein required from prophase until metaphase which participates in spindle assembly, centrosome separation, post-mitotic centrosome movement and bipolar spindle formation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 15% of eukaryotes contain supernumerary B chromosomes. When present, B chromosomes frequently represent as much as 5% of the genome. Despite thousands of reports describing the distribution of supernumeraries in various taxa, a comprehensive theory for the origin, maintenance and evolution of B chromosomes has not emerged. Here we sequence the complete genomes of individual cichlid fish (Astatotilapia latifasciata) with and without B chromosomes, as well as microdissected B chromosomes, to identify DNA sequences on the B. B sequences were further analyzed through qPCR and in situ hybridization. We find that the B chromosome contains thousands of sequences duplicated from essentially every chromosome in the ancestral karyotype. Although most genes on the B chromosome are fragmented, a few are largely intact and we detect evidence that at least three of them are transcriptionally active. We propose a model in which the B chromosome originated early in the evolutionary history of Lake Victoria cichlids from a small fragment of one autosome. DNA sequences originating from several autosomes, including protein-coding genes and transposable elements, subsequently inserted into this proto-B. We propose that intact B chromosome genes involved with spindle fusion and kinetochore attachment may play a role in driving the transmission of the B chromosome. Furthermore, our work suggests that karyotyping is an essential step prior to genome sequencing to avoid problems in genome assembly as well as analytical biases created by the presence of high copy number sequences on the B chromosome.
    Molecular Biology and Evolution 04/2014; 31(8):2061-2072. DOI:10.1093/molbev/msu148 · 14.31 Impact Factor
  • Source
    • "Notably, spindle and kinetochore-associated protein complexes have several key properties, and play an important role in coupling chromosome movement to microtubule depolymerization [11,12]. Spindle and kinetochore associated complex subunit 1 (SKA1) is a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation [13,14]. Depletion of SKA1 proteins results in sparse microtubule arrays that often exhibited twisted or bent spindles. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of oral squamous cell carcinoma is very poor due to local recurrence and metastasis. This study explores the molecular events involved in oral carcinoma with the goal of developing novel therapeutic strategies. The mitotic spindle is a complex mechanical apparatus required for the accurate segregation of sister chromosomes during mitosis. Spindle and kinetochore associated complex subunit 1 (SKA1) is a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation. In recent years, much attention has been focused on determining how SKA proteins interact with each other, as well as their biological role in cancer cells. However, the precise role of SKA1 in oral carcinoma remains unknown. In order to investigate the role of SKA1 in oral cancer, we employed lentivirus-mediated shRNA to silence SKA1 expression in the CAL-27 human oral adenosquamous carcinoma cell line. Depletion of SKA1 in CAL-27 cells significantly decreased cell proliferation, as determined by MTT and colony formation assays. These results strongly demonstrate that reduced SKA1 protein levels may cause inhibition of tumor formation. The shRNA-mediated depletion of SKA1 also led to G2/M phase cell cycle arrest and apoptosis. This is the first report to show that SKA1 plays an important role in the progression of oral adenosqamous carcinoma. Thus, silencing of SKA1 by RNAi might be a potential therapy for this disease.
    Cancer Cell International 08/2013; 13(1):83. DOI:10.1186/1475-2867-13-83 · 1.99 Impact Factor
  • Source
    • "To date, all the Ndc80 loop-interacting proteins identified have no reported microtubule depolymerising activity. Although the Dam1 and Ska complexes have been shown to track on the plus end of depolymerising microtubules and the TOG proteins are in fact microtubule polymerases, it remains enigmatic as to how microtubule depolymerisation per se is directionally driven during anaphase A [16,17]. It should also be of note that whether the Dam1 and the Ska complexes interact with the loop remains to be established [16,18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of the structure and function of kinetochores has advanced dramatically over the past 10 years, yet how the plus end of spindle microtubules interacts with the kinetochore and establishes amphitelic attachment for proper sister chromatid segregation remains unresolved. However, several recent reports from different organisms have shed new light on this issue. A key player in microtubule-kinetochore interaction is the conserved Ndc80 outer kinetochore complex. In both yeast and human cells in particular, a ubiquitous internal 'loop' found in the Ndc80 molecule interrupting its C-terminal coiled-coil domain plays critical roles in protein-protein interaction, by recruiting microtubule-binding proteins to ensure proper kinetochore-microtubule attachment. In this commentary, we summarise the recent progress made and discuss the evolutionary significance of this loop's role in microtubule dynamics at the kinetochore for accurate chromosome segregation.
    Cell Division 03/2013; 8(1):2. DOI:10.1186/1747-1028-8-2 · 2.63 Impact Factor
Show more