Article

Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus.

Division of Rheumatology and Allergy-Clinical Immunology, North Shore Long Island Jewish Health System, Marcus Avenue, Lake Success, New York 11042, USA.
Arthritis research & therapy (Impact Factor: 4.12). 10/2008; 10(5):R109. DOI: 10.1186/ar2506
Source: PubMed

ABSTRACT This trial evaluated the safety, biologic activity, and pharmacokinetics of belimumab, a fully human monoclonal antibody that inhibits the biologic activity of the soluble form of the essential B-cell survival factor B-lymphocyte stimulator (BLyS) in patients with systemic lupus erythematosus (SLE).
Seventy patients with mild-to-moderate SLE were enrolled in a phase I, double-blind, randomized study and treated with placebo (n = 13) or belimumab (n = 57) at four different doses (1.0, 4.0, 10, and 20 mg/kg) as a single infusion or two infusions 21 days apart. Patients were followed for 84 to 105 days to assess adverse events, pharmacokinetics, peripheral blood B-cell counts, serology, and SLE disease activity. Data from the study were summarized using descriptive statistics. chi2 type tests were used to analyze discrete variables. The Kruskal-Wallis test, the Wilcoxon test, and the analysis of covariance were used to analyze the continuous variables, as appropriate. The analysis was performed on all randomized patients who received study agent.
The incidences of adverse events and laboratory abnormalities were similar among the belimumab and placebo groups. Belimumab pharmacokinetics were linear across the 1.0 to 20 mg/kg dose range. Long terminal elimination half-life (8.5 to 14.1 days), slow clearance (7 ml/day per kg), and small volume of distribution (69 to 112 ml/kg) were consistent with a fully human antibody. Significant reductions in median percentages of CD20+ B cells were observed in patients treated with a single dose of belimumab versus placebo (day 42: P = 0.0042; and day 84: P = 0.0036) and in patients treated with two doses of belimumab versus placebo (day 105: P = 0.0305). SLE disease activity did not change after one or two doses of belimumab.
Belimumab was well tolerated and reduced peripheral B-cell levels in SLE patients. These data support further studies of belimumab in autoimmune disorders.

Download full-text

Full-text

Available from: Ellen M Ginzler, Jun 20, 2015
0 Followers
 · 
144 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported that human total body clearance (CL) and steady-state volume of distribution (Vss) of monoclonal antibodies (mAbs) could be predicted reasonably well from monkey data alone using simple allometry with scaling exponents of 0.79 and 1.12 (for soluble targets), and 0.96 and 1.00 (for membrane-bound targets). In the present study, to predict the plasma concentration-time profiles of mAbs in humans, we employed simple dose-normalization and species-invariant time methods (elementary Dedrick plot and complex Dedrick plot), based on the monkey data and the scaling exponents we previously determined. The results demonstrated that the species-invariant time methods were able to provide higher accuracy of prediction than simple dose-normalization, regardless of the type of target antigens (soluble or membrane-bound). The accuracy between elementary Dedrick plot and complex Dedrick plot was nearly equivalent. The predicted human CL and Vss using species-invariant time methods were within mostly 2-fold differences from the observed values. The prediction not only of pharmacokinetic (PK) parameters but also of the plasma concentration-time profile in humans can serve as guidelines for better planning of clinical studies on mAbs.
    Drug Metabolism and Pharmacokinetics 12/2011; 27(3):354-9. DOI:10.2133/dmpk.DMPK-11-SH-059 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: B cells and antibodies play an important role in the alloresponse to renal grafts as well as in immune-mediated glomerular diseases. In transplantation, greater recognition and improved diagnosis of antibody-mediated rejection have been a catalyst to the introduction of newer drugs and regimens that target B cells, plasma cells, and donor-specific antibodies to improve the outcome associated with antibody-mediated rejection. In immune-mediated renal disease, novel and more selective B cell therapies are gradually modifying the traditional therapeutic approach that consists of steroids and other immunosuppressants. A new era of selective and more effective immunosuppression agents that target the humoral response is finally emerging in transplantation and renal diseases.
    Clinical Journal of the American Society of Nephrology 12/2009; 5(1):142-51. DOI:10.2215/CJN.04580709 · 5.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE) is a chronic multisystem disease in which various cell types and immunological pathways are dysregulated. Current therapies for SLE are based mainly on the use of non-specific immunosuppressive drugs that cause serious side effects. There is, therefore, an unmet need for novel therapeutic means with improved efficacy and lower toxicity. Based on recent better understanding of the pathogenesis of SLE, targeted biological therapies are under different stages of development. The latter include B-cell targeted treatments, agents directed against the B lymphocyte stimulator (BLyS), inhibitors of T cell activation as well as cytokine blocking means. Out of the latter, Belimumab was the first drug approved by the FDA for the treatment of SLE patients. In addition to the non-antigen specific agents that may affect the normal immune system as well, SLE-specific therapeutic means are under development. These are synthetic peptides (e.g. pConsensus, nucleosomal peptides, P140 and hCDR1) that are sequences of conserved regions of molecules involved in the pathogenesis of lupus. The peptides are tolerogenic T-cell epitopes that immunomodulate only cell types and pathways that play a role in the pathogenesis of SLE without interfering with normal immune functions. Two of the peptides (P140 and hCDR1) were tested in clinical trials and were reported to be safe and well tolerated. Thus, synthetic peptides are attractive potential means for the specific treatment of lupus patients. In this review we discuss the various biological treatments that have been developed for lupus with a special focus on the tolerogenic peptides.
    Journal of Autoimmunity 06/2014; DOI:10.1016/j.jaut.2014.06.002 · 7.02 Impact Factor