Article

A Subtype-Specific Function for the Extracellular Domain of Neuroligin 1 in Hippocampal LTP

Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
Neuron (Impact Factor: 15.98). 10/2012; 76(2):309-16. DOI: 10.1016/j.neuron.2012.07.024
Source: PubMed

ABSTRACT At neuronal excitatory synapses, two major subtypes of the synaptic adhesion molecule neuroligin are present. These subtypes, neuroligin 1 and neuroligin 3, have roles in synaptogenesis and synaptic maintenance that appear largely overlapping. In this study, we combine electrophysiology with molecular deletion and replacement of these proteins to identify similarities and differences between these subtypes. In doing so, we identify a subtype-specific role in LTP for neuroligin 1 in young CA1, which persists into adulthood in the dentate gyrus. As neuroligin 3 showed no requirement for LTP, we constructed chimeric proteins of the two excitatory neuroligin subtypes to identify the molecular determinants particular to the unique function of neuroligin 1. Using in vivo molecular replacement experiments, we find that these unique functions depend on a region in its extracellular domain containing the B site splice insertion previously shown to determine specificity of neurexin binding.

0 Followers
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic damage is a critical hallmark of Alzheimer's disease, and the best correlate with cognitive impairment ante mortem. Synapses, the loci of communication between neurons, are characterized by signature protein combinations arrayed at tightly apposed pre- and post-synaptic sites. The most widely studied trans-synaptic junctional complexes, which direct synaptogenesis and foster the maintenance and stability of the mature terminal, are conjunctions of presynaptic neurexins and postsynaptic neuroligins. Fluctuations in the levels of neuroligins and neurexins can sway the balance between excitatory and inhibitory neurotransmission in the brain, and could lead to damage of synapses and dendrites. This review summarizes current understanding of the roles of neurexins and neuroligins proteolytic processing in synaptic plasticity in the human brain, and outlines their possible roles in β-amyloid metabolism and function, which are central pathogenic events in Alzheimer's disease progression.
    Neurobiology of aging 11/2013; 35(4). DOI:10.1016/j.neurobiolaging.2013.09.032 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions. Hebbian forms of long-lasting synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-have been well studied and are considered to be the cellular basis for particular types of memory. Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity. New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.
    The Journal of Cell Biology 10/2013; 203(2):175-86. DOI:10.1083/jcb.201306030 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leucine-rich repeat transmembrane proteins (LRRTMs) are synaptic cell adhesion molecules that trigger excitatory synapse assembly in cultured neurons and influence synaptic function in vivo, but their role in synaptic plasticity is unknown. shRNA-mediated knockdown (KD) of LRRTM1 and LRRTM2 in vivo in CA1 pyramidal neurons of newborn mice blocked long-term potentiation (LTP) in acute hippocampal slices. Molecular replacement experiments revealed that the LRRTM2 extracellular domain is sufficient for LTP, probably because it mediates binding to neurexins (Nrxs). Examination of surface expression of endogenous AMPA receptors (AMPARs) in cultured neurons suggests that LRRTMs maintain newly delivered AMPARs at synapses after LTP induction. LRRTMs are also required for LTP of mature synapses on adult CA1 pyramidal neurons, indicating that the block of LTP in neonatal synapses by LRRTM1 and LRRTM2 KD is not due to impairment of synapse maturation.
    Neuron 08/2013; 79(3):439-46. DOI:10.1016/j.neuron.2013.06.007 · 15.98 Impact Factor