Activation of the cholinergic anti-inflammatory system in peripheral blood mononuclear cells from patients with Borderline Personality Disorder

Dept. of Psychology & Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain
Journal of Psychiatric Research (Impact Factor: 3.96). 10/2012; 46(12). DOI: 10.1016/j.jpsychires.2012.09.009
Source: PubMed

ABSTRACT A case-control study including patients (n = 20) with Borderline Personality Disorder (BPD) and healthy controls (n = 33) was carried out. To avoid interferences of other clinical conditions on biological findings, patients were free of current major depressive episodes or substance dependence disorders, and had no life history of schizophrenia, bipolar or neuropsychiatric disorders. Patients were free of medication for at least two weeks at the time of the study. Studies carried out in peripheral mononuclear blood cells and plasma evidence a systemic inflammatory condition in unstable-impulsive BPD patients. Specifically, a significant increase in some intracellular components of two main pro-inflammatory pathways such as iNOS and COX-2, as well as an increase in the plasma levels of the inflammatory cytokine IL1β. Interestingly, patients have an increase in the protein expression of the anti-inflammatory subtype of nicotinic receptor α7nAChR. This finding may reflect a possible mechanism trying to maintain intracellular inflammation pathways under control. All together, these results describe an imbalanced, pro-inflammatory and oxidant phenotype in BPD patients independent of plasma cotinine levels. Although more scientific evidence is needed, the determination of multiple components of pro- and anti-inflammatory cellular pathways have interesting potential as biological markers for BPD and other generalized impulsive syndromes, specially data obtained with α7nAChR and its lack of correlation with plasma levels of nicotine metabolites. Their pharmacological modulation with receptor modulators can be a promising therapeutic target to take into account in mental health conditions associated with inflammatory or oxido/nitrosative consequences. Also, identifying at-risk individuals would be of importance for early detection and intervention in adolescent subjects before they present severe behavioural problems.

11 Reads
  • Social Psychiatry and Psychiatric Epidemiology 07/2014; 49(10). DOI:10.1007/s00127-014-0934-9 · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a widespread and debilitating mental disorder. However, the underlying molecular mechanism of schizophrenia remains largely unknown and no objective laboratory tests are available to diagnose this disorder. The aim of the present study was to characterize the alternations of glucose metabolites and identify potential diagnostic biomarkers for schizophrenia. Gas chromatography/mass spectrometry based targeted metabolomic method was used to quantify the levels of 13 glucose metabolites in peripheral blood mononuclear cells (PBMCs) derived from healthy controls, schizophrenia and major depression subjects (n = 55 for each group). The majority (84.6%) of glucose metabolites were significantly disturbed in schizophrenia subjects, while only two (15.4%) glucose metabolites were differently expressed in depression subjects relative to healthy controls in both training set (n = 35/group) and test set (n = 20/group). Antipsychotics had only a subtle effect on glucose metabolism pathway. Moreover, ribose 5-phosphate in PBMCs showed a high diagnostic performance for first-episode drug-naïve schizophrenia subjects. These findings suggested disturbance of glucose metabolism may be implicated in onset of schizophrenia and could aid in development of diagnostic tool for this disorder.
    Journal of Translational Medicine 07/2015; 13(1):226. DOI:10.1186/s12967-015-0540-y · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A dysfunctional network of prefrontal and (para-)limbic brain region has been suggested to underlie emotional dysregulation in borderline personality disorder (BPD). Abnormal activity in this network may be due to structural alterations in white-matter tracts connecting prefrontal and (para-)limbic brain regions. To test this hypothesis, we investigated the structural integrity of major white-matter tracts connecting these regions in BPD. Using diffusion tensor imaging, we investigated fractional anisotropy (FA), axonal anisotropy (AD) and radial diffusivity (RD) in the uncinate fasciculus, the major white-matter tract connecting (para-)limbic and prefrontal brain regions, in 26 healthy controls (HC) and 26 BPD participants. To clarify the specificity of possible white-matter alterations among HC and BPD participants, FA, AD and RD were also investigated in the cingulum. We found distinct structural alterations in the uncinate fasciculus but not in the cingulum of BPD participants. Compared to HC participants, BPD participants showed lower FA and higher RD in the uncinate fasciculus. By contrast, AD did not differ in the uncinate fasciculus of HC and BPD participants. Our finding of abnormal FA and RD in the uncinate fasciculus indicates distinct white-matter alterations in BPD, presumably due to stress-induced myelin degeneration in the aftermath of stressful life events. Although these alterations may account for abnormal activity in brain regions implicated in emotion dysregulation, such as the amygdala, anterior cingulate cortex and prefrontal cortex, it remains to be determined whether these alterations are specific for BPD.
    Psychological Medicine 06/2015; -1:1-10. DOI:10.1017/S0033291715001142 · 5.94 Impact Factor
Show more