mRNA levels of TLR4 and TLR5 are independent of H pylori.

Departmento de Microbiologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero y Dr. Aguirre s/n, Colonia Mitras Centro, Monterrey 64460, Mexico.
World Journal of Gastroenterology (Impact Factor: 2.43). 10/2008; 14(34):5306-10.
Source: PubMed

ABSTRACT To determine if the presence H pylori or its virulence affect toll-like receptor 4 (TLR4) and TLR5 mRNA expression levels.
For the in vivo assays, gastric biopsies were obtained from 40 patients and H pylori status was determined. For the in vitro assays, human gastric adenocarcinoma mucosal cells (AGS) were cultured in the presence or absence of twelve selected H pylori strains. H pylori strains isolated from culture-positive patients and selected strains were genotyped for cagA and vacA. The cDNA was obtained from mRNA extracted from biopsies and from infected AGS cells. TLR4 and TLR5 mRNA levels were examined by real-time PCR.
The presence of H pylori did not affect the mRNA levels of TLR4 or TLR5 in gastric biopsies. The mRNA levels of both receptors were not influenced by the vacA status (P > 0.05 for both receptors) and there were no differences in TLR4 or TLR5 mRNA levels among the different clinical presentations/histological findings (P > 0.05). In the in vitro assay, the mRNA levels of TLR4 or TLR5 in AGS cells were not influenced by the vacAs1 status or the clinical condition associated with the strains (P > 0.05 for both TLR4 and TLR5).
The results of this study show that the mRNA levels of TLR4 and TLR5 in gastric cells, both in vivo and in vitro, are independent of H pylori colonization and suggest that vacA may not be a significant player in the first step of innate immune recognition mediated by TLR4 or TLR5.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) are crucial for pathogen recognition and downstream signaling to induce effective immunity. The gastric pathogen Helicobacter pylori is a paradigm of persistent bacterial infections and chronic inflammation in humans. The chronicity of inflammation during H. pylori infection is related to the manipulation of regulatory cytokines. In general, the early detection of H. pylori by TLRs and other pattern recognition receptors (PRRs) is believed to induce a regulatory cytokine or chemokine profile that eventually blocks the resolution of inflammation. H. pylori factors such as LPS, HSP-60, NapA, DNA, and RNA are reported in various studies to be recognized by specific TLRs. However, H. pylori flagellin evades the recognition of TLR5 by possessing a conserved N-terminal motif. Activation of TLRs and resulting signal transduction events lead to the production of pro- and anti-inflammatory mediators through activation of NF-κB, MAP kinases, and IRF signaling pathways. The genetic polymorphisms of these important PRRs are also implicated in the varied outcome and disease progression. Hence, the interplay of TLRs and bacterial factors highlight the complexity of innate immune recognition and immune evasion as well as regulated processes in the progression of associated pathologies. Here we will review this important aspect of H. pylori infection.
    BioMed Research International 02/2015; · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori infection is thought to be involved in the development of several gastric diseases. Two H. pylori virulence factors (vacuolating cytotoxin A and cytotoxin-associated gene A) reportedly interact with lipid rafts in gastric epithelial cells. The role of Toll-like receptor (TLR)-mediated signaling in response to H. pylori infection has been investigated extensively in host cells. However, the receptor molecules in lipid rafts that are involved in H. pylori-induced innate sensing have not been well characterized. This study investigated whether lipid rafts play a role in H. pylori-induced ceramide secretion and TLR4 expression and thereby contribute to inflammation in gastric epithelial cells. We observed that both TLR4 and MD-2 mRNA and protein levels were significantly higher in H. pylori-infected AGS cells than in mock-infected cells. Moreover, significantly more TLR4 protein was detected in detergent-resistant membranes extracted from H. pylori-infected AGS cells than in those extracted from mock-infected cells. However, this effect was attenuated by the treatment of cells with cholesterol-usurping agents, suggesting that H. pylori-induced TLR4 signaling is dependent on cholesterol-rich microdomains. Similarly, the level of cellular ceramide was elevated and ceramide was translocated into lipid rafts after H. pylori infection, leading to interleukin-8 (IL-8) production. Using the sphingomyelinase inhibitor imipramine, we observed that H. pylori-induced TLR4 expression was ceramide dependent. These results indicate the mobilization of ceramide and TLR4 into lipid rafts by H. pylori infection in response to inflammation in gastric epithelial cells.
    Infection and immunity 02/2012; 80(5):1823-33. DOI:10.1128/IAI.05856-11 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori (H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori.
    World Journal of Gastroenterology 02/2014; 20(6):1424-1437. DOI:10.3748/wjg.v20.i6.1424 · 2.43 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014