Article

Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.

New York Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
Cell stem cell (Impact Factor: 23.56). 10/2008; 3(3):289-300. DOI: 10.1016/j.stem.2008.07.026
Source: PubMed

ABSTRACT There is an emerging understanding of the importance of the vascular system within stem cell niches. Here, we examine whether neural stem cells (NSCs) in the adult subventricular zone (SVZ) lie close to blood vessels, using three-dimensional whole mounts, confocal microscopy, and automated computer-based image quantification. We found that the SVZ contains a rich plexus of blood vessels that snake along and within neuroblast chains. Cells expressing stem cell markers, including GFAP, and proliferation markers are closely apposed to the laminin-containing extracellular matrix (ECM) surrounding vascular endothelial cells. Apical GFAP+ cells are admixed within the ependymal layer and some span between the ventricle and blood vessels, occupying a specialized microenvironment. Adult SVZ progenitor cells express the laminin receptor alpha6beta1 integrin, and blocking this inhibits their adhesion to endothelial cells, altering their position and proliferation in vivo, indicating that it plays a functional role in binding SVZ stem cells within the vascular niche.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adult mammalian brain harbors a population of cells around their lateral ventricles capable of giving rise to new neurons throughout life. The so-called subventricular zone (SVZ) is a heterogeneous germinative niche in regard to the neuronal types it generates. SVZ progenitors give rise to different olfactory bulb (OB) interneuron types in accordance to their position along the ventricles. Here, I review data showing the difference between progenitors located along different parts of the SVZ axes and ages. I also discuss possible mechanisms for the origin of this diversity.
    Frontiers in Cellular Neuroscience 12/2014; 8:434. DOI:10.3389/fncel.2014.00434 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the developing central nervous system, most neurogenesis occurs in the ventricular and subventricular proliferative zones. In the adult telencephalon, neurogenesis contracts to the subependyma zone and the dentate gyrus (subgranular zone) of the hippocampus. These restricted niches containing progenitor cells which divide to produce neurons or glia, depending on the intrinsic and environmental cues. Neurogenic niches are characterized by a comparatively high vascular density and, in many cases, interaction with the cerebrospinal fluid (CSF). Both the vasculature and the CSF represent a source of signaling molecules, which can be relatively rapidly modulated by external factors and circulated through the central nervous system. As the brain develops, there is vascular remodeling and a compartmentalization and dynamic modification of the ventricular surface which may be responsible for the change in the proliferative properties. This review will explore the relationship between progenitor cells and the developing vascular and ventricular space. In particular the signaling systems employed to control proliferation, and the consequence of abnormal vascular or ventricular development on growth of the telencephalon. It will also discuss the potential significance of the barriers at the vascular and ventricular junctions in the influence of the proliferative niches.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-term antibody production is a key property of humoral immunity and is accomplished by long-lived plasma cells. They mainly reside in the bone marrow, whose importance as an organ hosting immunological memory is becoming increasingly evident. Signals provided by stromal cells and eosinophils may play an important role for plasma cell maintenance, constituting a survival microenvironment. In this joint study of experiment and theory, we investigated the spatial colocalization of plasma cells, eosinophils and B cells by applying an image-based systems biology approach. To this end, we generated confocal fluorescence microscopy images of histological sections from murine bone marrow that were subsequently analyzed in an automated fashion. This quantitative analysis was combined with computer simulations of the experimental system for hypothesis testing. In particular, we tested the observed spatial colocalization of cells in the bone marrow against the hypothesis that cells are found within available areas at positions that were drawn from a uniform random number distribution. We find that B cells and plasma cells highly colocalize with stromal cells, to an extent larger than in the simulated random situation. While B cells are preferentially in contact with each other, i.e., form clusters among themselves, plasma cells seem to be solitary or organized in aggregates, i.e., loosely defined groups of cells that are not necessarily in direct contact. Our data suggest that the plasma cell bone marrow survival niche facilitates colocalization of plasma cells with stromal cells and eosinophils, respectively, promoting plasma cell longevity.
    Cytometry Part A 02/2015; DOI:10.1002/cyto.a.22641 · 3.71 Impact Factor

Preview

Download
0 Downloads
Available from